Environmental Enrichment for Nonhuman Primates Resource Guide

January 1992 - February 1999

AWIC Resources Series No. 5
March 1999

Updates Environmental Enrichment Information Resources for Nonhuman Primates, 1987-1992

Editor:
Michael D. Kreger, M.S.
Animal Welfare Information Center
USDA, ARS, NAL
10301 Baltimore Avenue
Beltsville, MD 20705-2351

Selected chapters of this document have been updated by Kristina Adams, Animal Welfare Information Center.

Contact us : http://awic.nal.usda.gov/contact-us

Partial funding for this document comes from National Institutes of Health, Office of Laboratory Animal Welfare, Division of Animal Welfare.

Environmental Enrichment for Nonhuman Primates Resource Guide

Contents

Acknowledgements
A Message from OLAW
Introduction
How to Use This Document
Bibliography (January 1992 through December 1998):

1. Articles
 - General Environmental Enrichment
 - General Primate Enrichment
 - Enrichment Plans
 - Great Apes and Gibbons
 - Macaques
 - Marmosets and Tamarins
 - New World Monkeys
 - Old World Monkeys

2. Books and Conference Proceedings

Articles from the Animal Welfare Information Center Newsletter (these can be found at the end of this document)
NOTE: The following articles have been approved by USDA for inclusion in the newsletter and are in public domain. Although they have been reviewed editorially, they have not been peer reviewed. The views expressed are those of the authors.

- Using Training to Enhance Animal Care and Welfare

- The Use of Behavioral Management Techniques to Reduce or Eliminate Abnormal Behavior

- Environmental Enrichment for Captive Wildlife Through the Simulation of Gum Feeding

- Arguments for Single-caging of Rhesus Macaques: Are They Justified?

- Frequently Asked Questions About Safe Pair-housing of Macaques

- The Wisconsin Gnawing Stick
 Viktor Reinhardt (1997), Animal Welfare Information Center Newsletter 7(3-4): 11-12

Appendix A: USDA Final Rule on Environment Enhancement to Promote Psychological Well-Being--Section 3.81
(02/15/91 Vol. 56, No. 32, Federal Register, Pages 6426-6505)

National Agricultural Library Document Services
Acknowledgements

The editor acknowledges the assistance of Nelson Garnett and Carol Wigglesworth of the Office of Laboratory Animal Welfare, Viktor Reinhardt of the Animal Welfare Institute, Joanne Oliva-Purdy of the Baltimore Zoo, and Ray Hamel of the Primate Information Center for their review of this document and useful suggestions. D'Anna Jensen helped with layout. Partial funding for this document comes from National Institutes of Health, Office of Laboratory Animal Welfare (OLAW), Division of Animal Welfare.

A Message from OLAW

The National Institutes of Health has demonstrated a long-standing commitment to support AWIC's development of these resource documents. Earlier versions have proved to be beneficial to researchers and Institutional Animal Care and Use Committees as they implement the PHS Policy on Humane Care and Use of Laboratory Animals and comply with the Animal Welfare Act amendments that require environmental enrichment for nonhuman primates. This updated version will serve as a valuable compilation of literature on environmental enrichment since 1992. The NIH Office for Laboratory Animal Welfare is pleased to have had an opportunity to contribute to the development of this significant resource.

Introduction

The Library of Congress defines environmental enrichment as "enhancing the environment of confined animals in order to encourage natural behaviors and improve their quality of life." Environmental enrichment, also called behavioral enrichment, includes increasing the complexity of an otherwise unstimulating animal enclosure. This can include adding manipulable objects such as balls or boards for grooming and foraging, novel odors or food, or housing animals in compatible social groups. Environmental enrichment is a tool that can be used to improve the animal's psychological well-being by stimulating the ability to cope with daily changes in the social and physical environment, engaging the animal in species-typical behaviors, and reducing or eliminating maladaptive or pathological behaviors.

Environmental enrichment for nonhuman primates is not a recent concept. Zoo managers have long known about the benefits of a stimulating environment. In 1906, William Temple Hornaday, Director of the New York Zoological Park, encouraged visitors to come see the gorilla before it dies from "sullenness" and "lack of exercise". He did not expect the gorilla to live more than five months in captivity and relied on regular shipments of wild-caught nonhuman primates to replenish the zoo's stock. Carl Hagenbeck, the animal dealer and zoo director who introduced the world to naturalistic zoo exhibits and positive reinforcement training, wrote in 1910, "In order to keep great apes in sound health, it is necessary to provide them with plenty of society, either of their own or of some other. In the case of all animals in captivity, it is of first importance to take measures for combating the tedium from which they would otherwise suffer." (Beasts and Men, page 287). Zoos have since become acutely aware of the importance of environmental enrichment in terms of exhibiting well-adjusted animals to the public, improving breeding of rare species, and as a tool for preparing captive-reared endangered species for reintroduction to the wild.

As nonhuman primates have become models for human and animal health, researchers have realized that a high quality social and physical environment for primates in the laboratory is essential to research. Pioneers in environmental enrichment for laboratory primates such as Kathryn Bayne, Scott Line, Melinda Novak, and Viktor Reinhardt have
demonstrated the value and complexity of enhancing the animal environment given the contexts of biomedical research objectives, species, and individual animal life histories. They have shown that enriched environments can improve data collection as the data are not confounded by hormonal or behavioral indicators of distress. The research is more humane by reducing pain and distress to the animal and it may actually cost less (ie particularly if enriching the environment leads to breeding).

Besides the humane, scientific, and economic reasons to enrich the environment of nonhuman primates, there is now a legal reason. In the 1985 amendments to the Animal Welfare Act, the U.S. Congress required that minimum requirements be established "for a physical environment adequate to promote the psychological well-being of primates." The U.S. Department of Agriculture developed regulations to meet that mandate stipulating, "Dealers, exhibitors, and research facilities must develop, document, and follow an appropriate plan for environment enhancement adequate to promote the psychological well-being of nonhuman primates. The plan must be in accordance with the currently accepted professional standards as cited in appropriate professional journals or reference guides, and as directed by the attending veterinarian." (9CFR, Sec. 3.81)

In addition to the Animal Welfare Act, those who receive funding from the Public Health Service or are accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) must also comply with The Guide for the Care and Use of Laboratory Animals, which is based on a performance standards approach. The Guide contains sections related to environmental enrichment.

There is still a need for information about environmental enrichment for nonhuman primates. Recently published research, organization contacts, websites provide guidance to those who are familiar with nonhuman primate care and use and to those who wish to develop expertise. The topic is of such importance to the animal research community, that the National Research Council convened the Committee on Well-being of Nonhuman Primates to review the literature and produce guidelines. The resulting publication is The Psychological Well-being of Nonhuman Primates (1998, National Academy Press: Washington, D.C. USDA, Animal and Plant Health Inspection Service, Office of Animal Care is also reviewing the Animal Welfare Act regulations in order to clarify the regulations and provide guidance to the regulated community.

How to Use This Document

This publication updates and expands Environmental Enrichment Information Resources for Nonhuman Primates: 1987-1992. It is current though March 1999 and covers literature published since January 1992. As a resource manual, it is intended to be used for understanding the current regulations, developing ideas for enrichment applicable to laboratory and zoo settings, and introducing the reader to organizations and publications that can help in the design of the enrichment plan or give access to additional resources. This expanded version of the 1992 document contains the full text of relevant sections of the legislation, more organizations, websites and listservs, and a listing of all U.S. primate centers.

This resource guide is not comprehensive. There may be organizations that were not included or references that were not apparent in multidatabase searches. With the exception of the laws and regulations, none of the organizations or products mentioned in the document are endorsed by the U.S. Department of Agriculture.

Bibliographic citations are categorized taxonomically and may be cross-referenced in one of the general sections. It is current through December 1998. Although an effort has been made to ensure that articles are unique to each section, there is considerable overlap due to the scope of the individual articles. Information about specific techniques, such as the use of foraging boards, may be found in several sections.

In the 1985 amendments to the Animal Welfare Act (Improved Standards for Laboratory Animals Act), Congress included mention of "psychological well-being" for nonhuman primates. This phrase appears nowhere else in the Animal Welfare Act. Because of the difficulty in defining the phrase, U.S. Department of Agriculture enforcers of the Act at the Animal and Plant Health Inspection Service, Office of Animal Care were charged with defining the terms and developing regulations that ensure a physical environment that promotes primate well-being. Included below are the text from the Animal Welfare Act and the final version of the regulations as they appear in the Code of Federal Regulations. The published (Federal Register) USDA response to comments from the public on the proposed regulations can be found in Appendix A of this document.

In addition to the Animal Welfare Act, those who receive funding from the Public Health Service or are accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) must also comply with The Guide for the Care and Use of Laboratory Animals, which is based on a performance standards approach. The 1996 Guide is intended to assist institutions in caring for and using animals in ways judged to be scientifically, technically, and humanely appropriate. The Guide is also intended to assist investigators in fulfilling their obligation to plan and conduct animal experiments in accord with the highest scientific, humane, and ethical principles. The recommendations are based on published data, scientific principles, expert opinion, and experience with methods and practices that have proved to be consistent with high-quality, humane animal care and use. The Guide contains standards related to environmental enrichment in the section "Animal Environment, Housing and Management."

Animal Welfare Act as amended (7 U.S.C. §§ 2131 et. seq.)

Section 13. (a)(1) The Secretary shall promulgate standards to govern the humane handling, care, treatment, and transportation of animals by dealers, research facilities, and exhibitors.
(2) The standards described in paragraph (1) shall include minimum requirements--
(B) for exercise of dogs, as determined by an attending veterinarian in accordance with the general standards promulgated by the Secretary, and for a physical environment adequate to promote the psychological well-being of primates.

Title 9, Code of Federal Regulations, Subchapter A, Section 3.81

§ 3.81 Environment enhancement to promote psychological well-being.
Dealers, exhibitors, and research facilities must develop, document, and follow an appropriate plan for environment enhancement adequate to promote the psychological well-being of nonhuman primates. The plan must be in accordance with the currently accepted professional standards as cited in appropriate professional journals or reference guides, and as directed by the attending veterinarian. This plan must be made available to APHIS upon request, and, in the case of research facilities, to officials of any pertinent funding agency. The plan, at a minimum, must address each of the following:

(a) **Social grouping.** The environment enhancement plan must include specific provisions to address the social needs of nonhuman primates of species known to exist in social groups in nature. Such specific provisions must be in accordance with currently accepted professional standards, as cited in appropriate professional journals or reference guides, and as directed by the attending veterinarian. The plan may provide for the following exceptions:

1. If a nonhuman primate exhibits vicious or overly aggressive behavior, or is debilitated as a result of age or other conditions (e.g., arthritis), it should be housed separately;

2. Nonhuman primates that have or are suspected of having a contagious disease must be isolated from healthy animals in the colony as directed by the attending veterinarian. When an entire group or room of nonhuman primates is known to have or believed to be exposed to an infectious agent, the group may be kept intact during the process of diagnosis, treatment, and control.

3. Nonhuman primates may not be housed with other species of primates or animals unless they are compatible, do not prevent access to food, water, or shelter by individual animals, and are not known to be hazardous to the health and well-being of each other. Compatibility of nonhuman primates must be determined in accordance with generally accepted professional practices and actual observations, as directed by the attending veterinarian, to ensure that the nonhuman primates are in fact compatible. Individually housed nonhuman primates must be able to see and hear nonhuman primates of their own or compatible species unless the attending veterinarian determines that it would endanger their health, safety, or well-being.

(b) **Environmental enrichment.** The physical environment in the primary enclosures must be enriched by providing means of expressing noninjurious species-typical activities. Species differences should be considered when determining the type or methods of enrichment. Examples of environmental enrichments include providing perches, swings, mirrors, and other increased cage complexities; providing objects to manipulate; varied food items; using foraging or task-oriented feeding methods; and providing interaction with the care giver or other familiar and knowledgeable person consistent with personnel safety precautions.

(c) **Special considerations.** Certain nonhuman primates must be provided special attention regarding enhancement of their environment, based on the needs of the individual species and in accordance with the instructions of the attending veterinarian. Nonhuman primates requiring special attention are the following:

1. Infants and young juveniles;

2. Those that show signs of being in psychological distress through behavior or appearance;

3. Those used in research for which the Committee-approved protocol requires restricted activity;

4. Individually housed nonhuman primates that are unable to see and hear nonhuman primates of their own or compatible species; and

5. Great apes weighing over 110 lbs. (50 kg). Dealers, exhibitors, and research facilities must include in the environment enhancement plan special provisions for great apes weighing over 110 lbs. (50 kg), including additional opportunities to express species-typical behavior.

(d) **Restraint devices.** Nonhuman primates must not be maintained in restraint devices unless required for health reasons as determined by the attending veterinarian or by a research proposal approved by the Committee at research facilities. Maintenance under such restraint must be for the shortest period possible. In instances where long-term (more than 12
hours) restraint is required, the nonhuman primate must be provided the opportunity daily for unrestrained activity for at least one continuous hour during the period of restraint, unless continuous restraint is required by the research proposal approved by the Committee at research facilities.

(e) Exemptions. (1) The attending veterinarian may exempt an individual nonhuman primate from participation in the environment enhancement plan because of its health or condition, or in consideration of its well-being. The basis of the exemption must be recorded by the attending veterinarian for each exempted nonhuman primate. Unless the basis for the exemption is a permanent condition, the exemption must be reviewed at least every 30 days by the attending veterinarian.

(2) For a research facility, the Committee may exempt an individual nonhuman primate from participation in some or all of the otherwise required environment enhancement plans for scientific reasons set forth in the research proposal. The basis of the exemption shall be documented in the approved proposal and must be reviewed at appropriate intervals as determined by the Committee, but not less than annually.

(3) Records of any exemptions must be maintained by the dealer, exhibitor, or research facility and must be made available to USDA officials or officials of any pertinent funding Federal agency upon request.

(Approved by the Office of Management and Budget under control number 0579-0093)

Guide for the Care and Use of Laboratory Animals

Animal Environment, Housing and Management

Proper housing and management of animal facilities are essential to animal well-being, to the quality of research data and teaching or testing programs in which animals are used, and to the health and safety of personnel. A good management program provides the environment, housing, and care that permit animals to grow, mature, reproduce, and maintain good health; provides for their well-being; and minimizes variations that can affect research results. Specific operating practices depend on many factors that are peculiar to individual institutions and situations. Well-trained and motivated personnel can often ensure high-quality animal care, even in institutions with less than optimal physical plants or equipment.

Many factors should be considered in planning for adequate and appropriate physical and social environment, housing, space, and management. These include

1. The species, strain, and breed of the animal and individual characteristics, such as sex, age, size, behavior, experiences, and health.
2. The ability of the animals to form social groups with conspecifics through sight, smell, and possibly contact, whether the animals are maintained singly or in groups.
3. The design and construction of housing.
4. The availability or suitability of enrichments.
5. The project goals and experimental design (e.g., production, breeding, research, testing, and teaching).
6. The intensity of animal manipulation and invasiveness of the procedures conducted.
7. The presence of hazardous or disease-causing materials.
8. The duration of the holding period.

Animals should be housed with a goal of maximizing species-specific behaviors and minimizing stress-induced behaviors. For social species, this normally requires housing in compatible pairs or groups. A strategy for achieving desired housing should be developed by animal-care personnel with review and approval by the IACUC. Decisions by the IACUC in consultation with the investigator and veterinarian, should be aimed at achieving high standards for professional and husbandry practices considered appropriate for the health and well-being of the species and consistent
with the research objectives. After the decision-making process, objective assessments should be made to substantiate the adequacy of animal environment, husbandry, and management.

The environment in which animals are maintained should be appropriate to the species, its life history, and its intended use. For some species, it might be appropriate to approximate the natural environment for breeding and maintenance. (Chapter 2, pages 21-22)

Naturalistic Environments

Areas like pastures and islands afford opportunities to provide a suitable environment for maintaining or producing animals and for some types of research. Their use results in the loss of some control over nutrition, health care and surveillance, and pedigree management. These limitations should be balanced against the benefits of having the animals live in more natural conditions. Animals should be added to, removed from, and returned to social groups in this setting with appropriate consideration of the effects on the individual animals and on the group. Adequate supplies of food, fresh water, and natural or constructed shelter should be ensured. (Chapter 2, page 25)

Structural Environment

The structural environment consists of components of the primary enclosure-cage furniture, equipment for environmental enrichment, objects for manipulation by the animals, and cage complexities. Depending on the animal species and use, the structural environment should include resting boards, shelves or perches, toys, foraging devices, nesting materials, tunnels, swings, or other objects that increase opportunities for the expression of species-typical postures and activities and enhance the animals' well-being. Much has been learned in recent years about the natural history and environmental needs of many animals, but continuing research into those environments that enhance the well-being of research animals is encouraged. Selected publications that describe enrichment strategies for common laboratory animal species are listed in Appendix A and in bibliographies prepared by the Animal Welfare Information Center (AWIC 1992; NRC In press).

Social Environment

Consideration should be given to an animal's social needs. The social environment usually involves physical contact and communication among members of the same species (conspecifics), although it can include noncontact communication among individuals through visual, auditory, and olfactory signals. When it is appropriate and compatible with the protocol, social animals should be housed in physical contact with conspecifics. For example, grouping of social primates or canids is often beneficial to them if groups comprise compatible individuals. Appropriate social interactions among conspecifics are essential for normal development in many species. A social companion might buffer the effects of a stressful situation (Gust and others 1994), reduce behavioral abnormality (Reinhardt and others 1988, 1989), increase opportunities for exercise (Whary and others 1993), and expand species-typical behavior and cognitive stimulation. Such factors as population density, ability to disperse, initial familiarity among animals, and social rank should be evaluated when animals are being grouped (Borer and others 1988; Diamond and others 1987; Drickamer 1977; Harvey and Chevins 1987; Ortiz and others 1985; Vandenbergh 1986, 1989). In selecting a suitable social environment, attention should be given to whether the animals are naturally territorial or communal and whether they should be housed singly, in pairs, or in groups. An understanding of species-typical natural social behavior will facilitate successful social housing.

However, not all members of a social species can or should be maintained socially; experimental, health, and behavioral reasons might preclude a successful outcome of this kind of housing. Social housing can increase the likelihood of animal wounds due to fighting (Bayne and others 1995), increase susceptibility to such metabolic disorders as atherosclerosis (Kaplan and others 1982), and alter behavior and physiologic functions (Bernstein 1964; Bernstein and others 1974a,b). In addition, differences between sexes in compatibility have been observed in various species (Crockett and others 1994; Grant and Macintosh 1963; Vandenbergh 1971; vom Saal 1984). These risks of social housing are greatly reduced if the animals are socially compatible and the social unit is stable.
It is desirable that social animals be housed in groups; however, when they must be housed alone, other forms of
enrichment should be provided to compensate for the absence of other animals, such as safe and positive interaction
with the care staff and enrichment of the structural environment. (Chapter 2, pages 36-38)

Organizations and Websites

American Association of Zoo Keepers (AAZK) http://www.aazk.org

AAZK’s Enrichment Committee provides “animal caregivers the means in which to enrich, stimulate, and challenge the
lives of the animals in their care." The committee augments the "Enrichment Options" column in the Animal Keepers' Forum and in The Shape of Enrichment newsletter to provide a means for communicating ideas, techniques and
information about enrichment. The website provides definitions, health and safety issues, printed resources, the
enrichment video library, suggested guidelines for enrichment, and links.

American Zoo and Aquarium Association (AZA) http://www.aza.org
8403 Colesville Rd., Suite 710
Silver Spring, MD 20910-3314
U.S.A.
Tel: (301) 562-0777; Fax: (301) 562-0888

The AZA Office of Conservation and Science coordinates Taxon Advisory Groups (TAG) which monitor the status of
particular species in captivity and provide recommendations on species management in captivity and with respect to
conservation efforts. Primate TAGs include gibbons, great apes, New World monkeys, Old World monkeys, and
prosimians. Committees, such as the Behavior and Husbandry Advisory Committee, specialize in broad scientific areas
and are coordinated to serve in advisory capacities for TAGs. The AZA holds regional and annual conferences at which
environmental enrichment at zoos is often discussed. Services are geared towards member institutions, but anyone may
contact members of these groups for information. There are fees for AZA membership, published membership
directories, reports, and conference proceedings.

American Society of Primatologists http://www.asp.org/

The American Society of Primatologists is an educational and scientific organization whose purpose is to promote the
discovery and exchange of information regarding primates, including all aspects of their anatomy, behavior,
development, ecology, evolution, genetics, nutrition, physiology, reproduction, systematics, conservation, husbandry,
and use in biomedical research. The society publishes the American Journal of Primatology, a quarterly bulletin for

Animal and Plant Health Inspection Service
Office of Animal Care (APHIS/AC) http://www.aphis.usda.gov/ac/
4700 River Rd., Unit 85
Riverdale, MD 20737-1234
USA
Tel: (301) 734-5240; Fax: (301) 734-4978; E-mail: ace@aphis.usda.gov

The U.S. Department of Agriculture office that enforces the Animal Welfare Act and develops regulations for animal
care by exhibitors, researchers, and animal dealers. APHIS/AC answers questions regarding the regulations including
those about the psychological well-being of nonhuman primates. The staff also refers patrons to regional offices where
they can communicate directly with Animal Care inspectors and veterinary medical officers. APHIS/AC provides
information on its activities and legislative updates in a free newsletter.

National Agricultural Library
10301 Baltimore Ave.
Beltsville, MD 20705
USA
Tel: (301) 504-6212; Fax: (301) 504-7125; Contact us: http://awic.nal.usda.gov/contact-us

A U.S. Department of Agriculture, Agricultural Research Service information provider that assists researchers, educators, and exhibitors who must comply with the Animal Welfare Act. Provides reference and referral services including multi-database literature searches, publication of animal care and use resource guides, bibliographies, and Animal Welfare Information Center Bulletin, and offering the workshop "Meeting the Information Requirements of the Animal Welfare Act". Some publications include sections or articles relevant to environmental enrichment for nonhuman primates. All services are free except for extended online literature searches.

Animal Welfare Institute

Laboratory Animals Section http://www.awionline.org/Lab_animals

PO Box 3650
Washington, DC 20027
USA
Tel: (703) 836-4300; Fax: (703) 836-0400; E-mail: awi@awionline.org

The lab animals section of the AWI website contains full-text articles about primate cage space, lighting, manipulanda, and social housing largely written by primatologist Viktor Reinhardt. The site includes a number of reference publications by Victor and Annie Reinhardt including Environmental Enhancement for Caged Rhesus Macaques: A Photographic Documentation and Literature Review; Annotated Bibliography on Refinement and Environmental Enrichment for Primates Kept in Laboratories; and Environmental Enrichment for Primates: Annotated Database on Environmental Enrichment and Refinement for Primates. The database contains over 1500 entries and 400 full-text articles available online. It includes theoretical, philosophical, practical, and technical citations from journal articles, books, and chapters. The database is regularly updated and is easily searched by the search engine on its home page. The "Special Features" button lists search topics and suggests keywords.

ABWAK is a non-profit organization specializing in improving cooperation among wild animal keepers. The site has links to information about the journal Ratel, animal diets, husbandry, grants, and job openings. A publication called *Guidelines for Environmental Enrichment* can be purchased through the website.

Australian and New Zealand Council for the Care of Animals in Research and Teaching, Limited (ANZCCART)

The Director
Mitchell Building B03
The University of Adelaide
South Australia 5005
Tel: 61-8-8303 7586, Fax: 61-8-8303 7587; E-mail: anzcccart@adelaide.edu.au

The Executive Officer
C/- The Royal Society of New Zealand
P.O. Box 598
Wellington
Tel: 64-4-472 7421; Fax: 64-4-473 1841; E-mail: anzcccart@rsnz.org
Through its varied activities, ANZCCART seeks to promote effective communication and cooperation between all those concerned with the care and use of animals in research and teaching. It publishes a quarterly newsletter and other publications on topics such as euthanasia, animal care and use committees, humane care and use of animals in research, and pain. Articles sometimes address environmental enrichment issues. The newsletter is free of charge.

Canadian Council on Animal Care (CCAC) http://www.ccac.ca/
315-350 Albert Street
Ottawa ON K1R 1B1
Canada
Tel: 613-238-4031; Fax: 613-238-2837; E-mail: pjohnson@ccac.ca

CCAC establishes and enforces standards and guidelines (in Canada) concerning the use of animals in research, testing and teaching. Maintains active, expert committees on all aspects of animal care and use. The Council's program is based on its major publication "Guide to the Care and Use of Experimental Animals," Volume 1, 2nd Edition (1993) and Volume 2 (1984). Both documents address environmental enrichment. CCAC conducts workshops and training courses on various aspects of the care and use of experimental animals, as well as the training of personnel working with these animals. Semi-annually publishes the newsletter, *Resource*.

Environmental Enhancement for Caged Rhesus Macaques: A Photographic Documentation

A walk-through electronic slideshow developed by Viktor Reinhardt and David Seelig containing 60 photographs of enrichment techniques for laboratory rhesus macaques. Sections are divided into Animate Environmental Enrichment and Inanimate Environmental Enrichment.

European Federation for Primatology http://www.unipv.it/webbio/efp/efp.htm

The EFP brings together national primatological societies as well as groups of primatologists in those countries of Europe where societies could not yet be founded. It coordinates activities between different European societies and promotes the management and study of nonhuman primates. The EFP newsletter is published in the journal *Folia Primatologica*.

European Marmoset Research Group (EMRG) http://www.emrg.org
Christopher Pryce
Behavioural Neurobiology Laboratory
Swiss Federal Institute of Technology Zurich
Schorenstr. 16
CH-8603 Schwerzenbach
Switzerland
Tel: +41 (0) 1 655 7386; Fax: +41 (0) 1 655 7203; E-mail: pryce@behav.biol.ethz.ch

The EMRG is a nonprofit organization that aims to facilitate communication exchange between academic and industrial institutions conducting biological and/or biomedical research using nonhuman primates with a specific goal of optimizing the use of marmosets and tamarins. The group publishes a biannual newsletter and organizes workshops. It also published the 1997 *Handbook of Marmosets and Tamarins in Biological and Biomedical Research*.

European Primate Resources Network http://www.euprim-net.eu/

EUPREN is an initiative of European institutes that perform research on nonhuman primates. The objectives of EUPREN are to ensure ethical and controlled use of primates, to secure availability of high quality primates for research, and to establish an information network for those interested or working in research. The website contains bylaws; a census of primates in Europe and North Africa; abstracts from meetings on remote monitoring, housing, husbandry, and well-being, and marmoset and tamarin research; and a discussion paper on cage sizes for primates.

International Directory of Primatology http://www.primate.wisc.edu/pin/idp
A directory of the field of primatology including detailed information about organizations, field studies, population management, people active in primatology, and information resources. The online directory is searchable and available at the above website.

Institute for Laboratory Animal Research (ILAR) http://dels.nas.edu/ilar/
The Keck Center of the National Academies
500 5th Street, NW, Keck 687
Washington, DC 20001
USA
Tel: (202) 334-2590; Fax: (202) 334-1687; E-mail: ILAR@nas.edu

ILAR is a division of the Commission on Life Sciences, National Research Council, National Academy of Sciences. It develops guidelines and disseminates information on the scientific, technological, and ethical use of animals and related biological resources in research, testing, and education. ILAR promotes high-quality, humane care of animals and the appropriate use of animals and alternatives. ILAR functions within the mission of the National Academy of Sciences as an advisor to the federal government, the biomedical research community, and the public. ILAR spearheaded the committee which produced the 1998 book *The Psychological Well-being of Nonhuman Primates*.

Richard Wrangham, President
Harvard University
Peabody Museum, 11 Divinity Avenue
Cambridge, MA 02138
USA
Tel: (617) 495-5948; Fax: (617) 496-8041; Email: wrangham@fas.harvard.edu

The society facilitates cooperation among primatologists and fosters conservation and the judicious use of primates in research. Environmental enrichment issues are addressed by the Captive Care and Breeding Committee. IPS operates a small grants program for education and enrichment studies that have broad implications. The grants program is open to all applicants. IPS publishes a biannual newsletter and maintains a page for Educational Resources About Primates on the Web.

Laboratory Primate Newsletter http://www.brown.edu/Research/Primate
Psychology Department
Box 1853
Brown University
Providence, Rhode Island 02912
USA
Tel: (401) 863-2511; Fax: (401) 863-1300; E-mail: primate@brown.edu

The quarterly newsletter provides information of interest to people involved in nonhuman primate research. A Directory of Graduate Programs in Primatology and Primate Research is issued periodically. The newsletter is available by e-mail or on the web. To subscribe, send the message: Subscribe LPN-L your-own-name to listserv@listserv.brown.edu. The website contains all issues of Laboratory Primate Newsletter, policies, graduate programs, and related links. The site also contains a very useful environmental enrichment section called Articles on Environmental Enrichment and Psychological Well-being which contains all articles on environmental enrichment and psychological well-being that were printed in the newsletter from 1984-2003. The site topics are social enrichment, environmental enrichment,
training, physiological and other measures of stress and psychological well-being, rearing and social development, colony management, editorials, and information resources. Articles are available full text and free of charge.

National Institutes of Health Office of Extramural Research
OLAW, Division of Animal Welfare
6100 Executive Blvd., Suite B01
Rockville, MD 20892-7507
USA
Tel: (301) 496-7163; Fax: (301) 402-2803; E-mail: olaw@od.nih.gov

OLAW enforces the PHS Policy on Humane Care and Use of Laboratory Animals for researchers who receive Public Health Service funding. Produces conferences and workshops relating to responsible animal care and use in biomedical research. OLAW can provide guidance on the development of plans to enhance psychological well-being of nonhuman primates. The PHS Policy requires adherence to the Animal Welfare Act regulations and the Guide for the Care and Use of Laboratory Animals.

PrimateLit http://primatelit.library.wisc.edu
Library and Information Service
Wisconsin Primate Research Center
University of Wisconsin
1220 Capitol Court
Madison, WI 53715
Tel: (608) 263-3512; E-mail: library@primate.wisc.edu

PrimateLit is a bibliographical database for primatology and exists through a cooperative agreement between the Washington (WaNRPC) and Wisconsin (WRPC) National Primate Research Centers. The WPRC coordinates the project with technical support from the University of Wisconsin-Madison's Library Technology Group. Literature acquisition, analysis, and indexing are carried out by the Primate Information Center at the WaNRPC, University of Washington. The database, comprising over 165,000 records dating from 1940, allows primate researchers to do their bibliographic research on their home or office computers.

Primate Info Net (PIN) http://www.primate.wisc.edu/pin/
Primate Center Library
Wisconsin Regional Primate Research Center
1220 Capitol Court
Madison, WI 53715-1299
USA
Tel: (608) 263-3512; Fax: (608) 263-4031; E-mail: library@primate.wisc.edu

PIN is a comprehensive website relating to all aspects of primatology maintained by the Wisconsin Primate Research Center (WPRC) Library (http://library.primate.wisc.edu/) at the University of Wisconsin, Madison. The website includes information services, organizations and programs, information resources, products and services for primates, and related sites.

The WPRC Library is available to the public and is used for computerized database searches; document delivery; and contains 6,000 books; 10,000 volumes of journals; 300 active journal subscriptions; and 7,000 slides, videotapes, and other audiovisual materials. This is a major international resource. Other library services include:

- **ASKPRIMATE**: A cooperative Internet reference service available to the public. To ask a question or for referral, send e-mail to: askprimate@primate.wisc.edu.

- **PRIMATE-JOBS**: A job listing service on the World Wide Web. Includes paid and volunteer positions wanted and available.
Audiovisual Services: An archival collection of primate-related videotapes, slides, and audiotapes may be borrowed for research or education. For more information, contact Ray Hamel, Special Collections Librarian, via e-mail at: hamel@primate.wisc.edu.

International Directory of Primatology: A directory of the field of primatology that includes (1) detailed entries for major primate centers, laboratories, educational programs, foundations, conservation agencies, societies, and sanctuaries, (2) a listing of field studies and (3) information about primate specialist group members, studbook keepers and others who work with primates in captive settings.

World Directory of Primatologists. A list of over 3000 people in the field of primatology with contact and e-mail information.

Primate Products and Services http://www.primate.wisc.edu/pin/prodser.html
Wisconsin Regional Primate Research Center
University of Wisconsin, Madison
1220 Capitol Court
Madison, WI 53715-1299
USA
Tel: (608) 263-3512; Fax: (608) 263-4031; E-mail: library@primate.wisc.edu

A directory of companies that support of Primate Info Net and other Internet-based services of the Wisconsin Regional Primate Research Center Library and Information Service. These services provide for communication, referral, and access to information about nonhuman primates for primatologists worldwide. Listings include a brief description of each company's products or services, e-mail address and a link to the company web page.

Dr H. C. McKiggan-Fee
Staff Development
St. Andrews University
St. Andrews
Fife
Scotland KY16 9AJ
Tel: 01334 467174; E-mail: info@psgb.org

PSGB is a membership organization affiliated with the International Primatological Society. It has a Conservation Working Party and Captive Care Working Party to provide advice and coordinate action. Sponsors annual meeting. Publishes triennial Primate Eye.

Washington Regional Primate Research Center
Box 357330, University of Washington
Seattle, WA 98195-7330
USA
Tel: (206) 543-5178; Fax: (206) 616-1710; E-mail: prrs@bart.rprc.washington.edu

The PRRS (formerly the Primate Supply Information Clearinghouse, PSIC) is a NIH-supported conservation program that provides communication between research institutions to facilitate exchanges of nonhuman primates or their tissues. The goal of the PRRS is to increase sharing of these animals, thereby decreasing the need to import animals for research, and to ultimately decrease the number of animals needed. The PRRS maintains a database of information about programs, sources, services, available/wanted animals, tissues, and primate equipment. PRRS publishes two bulletins that serve as a reference and resource guides.

7833 Walker Drive
Suite 410
Primate Centers and Animal Colonies

National Primate Research Centers

National Primate Research Centers (NPRCs) are a group of eight highly specialized facilities for research using nonhuman primates (NHP). The centers are funded by grants through the National Institutes of Health (NIH), National Center for Research Resources (NCRR), Division of Comparative Medicine (DCM). Staffed with experienced research and support personnel, each center provides the appropriate research environment to foster the development of NHP models of human health and disease for biomedical investigations. The NPRCs are affiliated with academic institutions and are accessible to eligible biomedical and behavioral investigators supported by research project grants from the NIH and other sources. The National Primate Research Centers were formerly called Regional Primate Research Centers. The name was changed in April 2002 to reflect the expanded role of the centers. For more information, visit http://www.ncrr.nih.gov/compmed/cm_nprc.asp.

California National Primate Research Center http://www.cnprc.ucdavis.edu
University of California, Davis
One Shields Avenue
Davis, CA 95616
U.S.A.
Tel: (530) 752-0447, Fax: (530) 752-2880, Email: reception@primate.ucdavis.edu
Research emphasizes the effects of environmental influences on human health and basic biological approaches. Resources provided include medicine, pathology and clinical laboratory services, electron microscopy, inhalation toxicology chambers, colony database, animals from breeding and research colonies, research facilities and pathological specimens for collaborators.

New England Primate Research Center http://www.hms.harvard.edu/nerprc
One Pine Hill Dr.
PO Box 9102
Southborough, MA 01772
U.S.A.
Tel: (508) 524-8002, Fax: (508) 460-0612, Email: neprc@hms.harvard.edu
Research emphasis is on infectious diseases, immunology, ocological herpesviruses, pathology, behavioral biology, and cardiovascular disease. Provides tissues and other specimens for approved research projects as well as animals from breeding colonies.

Oregon National Primate Research Center http://onprc.ohsu.edu/
505 N.W. 185th Ave.
Beaverton, OR 97006-3448
U.S.A.
Tel: (503) 645-1141, Fax: (503) 690-5569, Email: smithsu@ohsu.edu
Scientists at the Oregon National Primate Research Center conduct basic and applied biomedical research in three priority areas identified for improving human health and well-being: (1) fertility control, early embryo development and women’s health; (2) brain development and degeneration; and (3) newly emerging viruses, especially AIDS-related agents.

Southwest National Primate Research Center http://www.sfbr.org/
P.O. Box 760549
San Antonio, TX 78245-0549
U.S.A.
Tel: (210) 258-9400, E-mail: stardif@icarus.sfbr.org
“At SNPRC, the primary research focus is on nonhuman primate models of human diseases, including common chronic diseases and infectious diseases, genetic and environmental effects on physiological processes, and susceptibility to specific diseases.” The center is located on the campus of the Southwest Foundation for Biomedical Research (http://www.sfbr.org).

Tulane National Primate Research Center http://www.tnprc.tulane.edu/index.shtml
18703 Three Rivers Road
Covington, LA 70433
U.S.A.
Tel: (504) 892-2040, Fax: (504) 893-1352, E-mail: info@tpc.tulane.edu
Specializes in research in microbiology, parasitology, urology, gene therapy, and behavior. Provides laparoscopy, ultrasound, and specimens. Collaborating scientists receive animal care, pathology services, parasitology services, science information services, medical illustration services, and animals.

Wisconsin Primate Research Center http://www.primate.wisc.edu/
University of Wisconsin-Madison
Graduate School
1220 Capital Court
Madison, WI 53715-1299
U.S.A.
Tel: (608) 263-3500, Fax: (608) 263-4031, E-mail: jlenon@primate.wisc.edu
Research emphasizes reproduction and development, neurobiology, physiological ethology, psychobiology, aging and metabolic disease, and immunology and virology. Outside investigators may request biological materials. Collaborating scientists receive many bioservices, computer services, and animals.

The **WPRC library** is available to the public and is used for computerized database searches; document delivery; and contains 6,000 books; 10,000 volumes of journals; 300 active journal subscriptions; and 7,000 slides, videotapes, and other audiovisual materials. This is a major international resource.

Yerkes National Primate Research Center http://www.emory.edu/YERKES/
Research emphasis is on biomedical and biobehavioral research to improve the health and well-being of human and nonhuman primates. Animals, veterinary medicine, pathology, and biomedical engineering are provided to investigators.

Additional Primate Centers and Animal Colonies

Caribbean Primate Research Center http://cprc.rcm.upr.edu/
University of Puerto Rico
Medical Sciences Campus
P.O. Box 1053
Sabana Seca, Puerto Rico 00952-1053
Tel: (809) 784-6619, Fax: (809) 795-6700, Email: mkessler@coqui.net

“The CPRC currently consists of three facilities: (1) the unique free-ranging island colony of rhesus monkeys on Cayo Santiago which is used primarily for behavioral, demographic, genetics and noninvasive types of biomedical research, (2) the Sabana Seca Field Station, an NIH-owned facility, which houses rhesus monkeys derived from the Cayo Santiago colony in various outdoor configurations for behavioral and biomedical studies, and (3) the CPRC Museum, located at the School of Medicine on the Medical Sciences Campus, which contains the CPRC Skeletal Collection, one of the world's largest collections of complete nonhuman primate skeletons for anatomical, anthropological and biomedical research. The CPRC also supports a field study site for investigations on introduced, unprovisioned, free-ranging populations of patas and rhesus monkeys located in the Sierra Bermeja of southwestern Puerto Rico.”

Duke University Primate Center http://www.duke.edu/web/primate/
3705 Erwin Road
Durham, NC 27705
U.S.A.
Tel: (919) 489-3364, Fax: (919) 490-5394, E-mail: primate@duke.edu

“Research at the Primate Center focuses on several major areas: the systematics, behavior, physiology, biomechanics and anatomy of living lemurs; husbandry practices necessary for keeping and breeding prosimians; field research involving the distribution, behavior, ecology, and conservation needs of lemurs in Madagascar; field research on habitat conservation, reintroduction of lemurs into the wild, and effectiveness of conservation education programs; and evolution of primates through the discovery, description, and analysis of living and fossil primates.” Researchers from outside the university are welcome and should contact the center to discuss their project.

Living Links Center http://www.emory.edu/LIVING_LINKS/
Emory University
954 N. Gatewood Road
Atlanta, Georgia 30329
U.S.A.
Tel: (404) 727-0915, Fax: (404) 727-3270, Email: LIVING_LINKS@emory.edu

The Living Links Center for the Advanced Study of Ape and Human Evolution specializes in comparisons of the social life, ecology, cognition, neurology, and molecular genetics of four extant great apes (bonobos, chimpanzees, gorillas, and orangutans) and humans. The Center was established in 1997 at Emory University and is an integrated part of Yerkes Primate Center. The institute conducts all of its work with noninvasive techniques that they would not hesitate to apply to human volunteers. Their goals are 1) to reconstruct human evolution, 2) pinpoint the differences and similarities between humans and apes, and 3) educate the public about apes, and promote their well-being and conservation.

New Iberia Research Center http://nirc.louisiana.edu
“The University of Louisiana at Lafayette New Iberia Research Center specializes in the breeding, management, and importation of a diverse range of nonhuman primate species and offers a broad range of diagnostic, laboratory, and human resources for the development and characterization of nonhuman primate models for applied and basic research aimed at promoting human quality of life.”

Squirrel Monkey Breeding and Research Resource http://www.smbrr.org
Primate Research Laboratory
Department of Comparative Medicine
University of South Alabama
Mobile, AL 36688
U.S.A.
Tel: (334) 460-6238, Fax: (334) 460-7783, Email: cabee@usouthal.edu
Research emphasizes multidisciplinary studies of reproduction in captive Bolivian squirrel monkeys and providing a resource of laboratory born and reared animals for NIH-sponsored research programs. Outside investigators may request tissue or body fluid specimens. Collaborating investigators are provided animal husbandry, medical care, pathology services, and colony animals.

Listservs

Alloprimate
A moderated general primatology site that focuses on primate conservation, ecology, research, environmental enrichment, health and disease, ethology/behavior, and sanctuary/zoo operations. The group may be joined either by sending a blank e-mail message to alloprimate-subscribe@egroups.com or by going through Yahoo!Groups at http://groups.yahoo.com/group/alloprimate.

Primate Enrichment Forum (PEF)
An email list designed to facilitate communication between professionals working at primate biomedical research facilities on environment enrichment topics, stress, well-being, and husbandry. The list is open to animal caretakers, veterinary, research, and behavioral technicians, veterinarians, colony managers, research scientists, and behaviorists/enrichment coordinators. In order to be added to the list, you must submit an application online by going to the following website: http://www.primate.wisc.edu/pin/pef/pefentry.html. If you have any questions, contact David Seelig at dseelig@vet.upenn.edu.

Primate-Science
An e-mail list managed by the Wisconsin Primate Research Center. It is open worldwide to staff at nonhuman primate centers and laboratories and those conducting primate research in academic institutions or zoos. The purpose of this forum is the factual, science-based exchange of ideas and information about nonhuman primates and is intended to serve the international primatological research community. In order to be added to the list, you must submit an application online by going to the following website: http://www.primate.wisc.edu/pin/ps/. If you have any questions, contact Matthew Hoffman at mhoffman@primate.wisc.edu.
Products and Suppliers

This Products and Suppliers list has not been updated since 2004 – and it was completely replaced in 2009 by the new Products and Suppliers list.

The following is a partial listing of companies that manufacture and/or supply nonhuman primate enrichment products.

Animal Management Resources, Inc. (Meg Hudson-Dye)

Internet: http://www.mytrainingstore.com/

Suppliers of training supplies such as clickers, whistles, and lanyards, and exclusive distributor of Active Minds Enrichment Gear, manufactured by Desert Plastics (2401A Phoenix, NE, Albuquerque, New Mexico, 87107, USA; Phone: 505-884-3889 OR 1-866-793-0376; Fax: 505-884-3932; E-mail: JoeBarr@desertplastics-abq.com; Internet: http://desertplastics-abq.com/). The toys are durable enough for all types of animals and come in unique colors and shapes. They can customize each shape according to your needs.

Bio-Serv. One 8th Street, Suite 1, Frenchtown, New Jersey 08825, USA.

Phone: 908-996-2155 OR 1-800-996-9908
Fax: 908-996-4123
E-mail: sales@bio-serv.com (Sales); vetserv@bio-serv.com (Veterinary Assistance); techserv@bio-serv.com (Technical Assistance)
Internet: http://www.bio-serv.com

Produces and distributes food treats, foraging and grooming boards, challenger balls, toys, and mirrors for nonhuman primates.

Britz-Heidbrink, Inc. 1302 9th Street, Wheatland, Wyoming 82201, USA

Phone: 307-322-4040
Fax: 307-322-4141
Internet: http://www.bhenrich.com/

Produces nonhuman primate caging that comes with Environ-Richment® Entertainment Panels that provide increased possibilities for manipulation, novel visual stimulation and foraging opportunities.

Lomir Primate Enrichment Technologies. 99 East Main Street, Malone, New York 12953, USA OR 95 Hout Notre-Dame-de-l’Ille-Perrot, Quebec, Canada, J7V 7M4, CANADA

Phone: 518-483-7697 or 1-877-425-3604 (USA) OR 514-425-3604 (CANADA)
Fax: 518-483-8195 (USA) OR 518-425-3605 (CANADA)
E-mail: info@lomir.com
Internet: http://www.lomir.com/pet

Producers of unique primate enrichment devices made of durable opaque polypropylene. Devices are designed to increase foraging time.
Audiovisuals available for loan from the Wisconsin Regional Primate Research Center are marked with their call numbers. NAL call numbers are included for audiovisuals contained in the collection of the National Agricultural Library (NAL). While NAL does not sell audiovisuals or publications from its collection, materials may be borrowed by interlibrary loan. Borrowing information can be found on the NAL website http://www.nal.usda.gov/borrow-
Audiovisual Archives http://www.primate.wisc.edu/pin/av.html
Lists slides and videotapes related to nonhuman primates that are available from the Primate Information Center at University of Wisconsin-Madison. For more information, contact Ray Hamel, Special Collections Librarian, via e-mail at: hamel@primate.wisc.edu

WRPCRC call number: VT0329
This program is designed to give caretakers an understanding of primate behaviors and develop a kind and respectful philosophy of care. Macaque behaviors shown include social interactions (grooming, play, aggression) and methods of communication (facial expressions such as open mouth threat, closed mouth threat, fear grin and lipsmacking). Also shown are a variety of examples of abnormal behavior developed when animals become stressful that caretakers should learn to identify. VHS, 25 min.

NAL call number: Videocassette no. 1327
WRPCRC call number: VT0273
This videotape (presented in three titled sections) is designed to provide instruction and promote discussion of environmental enrichment procedures for animals in zoos, laboratories, farms, and pets. Common marmosets are shown in a specific example in which they are provided with hidden food to encourage foraging behavior in order to reduce cage circling behavior. VHS, 37 min.

WRPCRC call number: VT0117
Describes and demonstrates the environmental enrichment devices and procedures for singly housed and group-housed species of macaques and New World monkeys at the New England Regional Primate Research Center. Some of the devices shown include hanging feeders, puzzle feeders, and PVC pipes. Procedures include the training of animals for blood sample collection for insulin readings. VHS, 30 min.

WRPCRC call number: SS034
Environment enrichment for caged rhesus macaques is shown through the introduction of branches or compatible companions. 78 slides.

WRPCRC call number: VT0129
A study was conducted on 5 primate species at the Granby Zoo in Montreal to compare the behaviors of primates in the wild and in captivity, to provide for better environmental enrichment in zoo exhibit design. Species studies were the gorilla, chimpanzee, orangutan, ring-tailed lemur (Lemur catta), and white-handed gibbon. Some abnormal behaviors shown include aggression, stereotypic pacing, obesity, and smoking a cigarette. VHS, 28 min.

NAL call number: Videocassette no. 1532
This video shows how the Metro Washington Park Zoo introduces experiences to the animals that are functionally similar to those they would encounter in their natural habitat. 15 min.
Descriptors: zoo animals, behavior, environmental enrichment.

WRPCRC call number: VT0619
Demonstration of several management techniques using positive reinforcement, on subjects ranging from siamangs to
tigers to human teenagers. VHS, 35 min.

NAL call number: Slide No. 435
Covers psychological well-being by social, non-social, contact, and non-contact approaches. 61 slides, 25 min. audiocassette, guide.
Descriptors: laboratory animals, behavior, enrichment.

Primate Enrichment (1996?). Produced and distributed by Kelley Bollen, Burnet Park Zoo, Syracuse, NY 13204, Tel: 315-435-8512
WRPCRC call number: VT0487
Primate enrichment at the Burnet Park Zoo through the use of food presentation devices and toys. Food presentation devices include plastic containers, PVC tubing, logs, puzzle boxes, cloth bags, milk crates, coconut feeders and frozen milk carton treats. Toys include burlap, cloth and paper bags; a boomer ball; a wicker basket and t-shirt; a cotton mop; and a burlap hammock. Species seen interacting with these objects include white-handed gibbons, ruffed lemurs, tamarins, vervets, mandrills, siamangs, ring-tailed lemurs, slow lorises (cucang), and bushbabies. VHS

WRPCRC call number: VT0217
Shows the acclimation techniques employed to reduce stress for corral-living rhesus monkeys when collecting fecal and blood samples. The monkeys are given food rewards in return for defecation in single holding cages. They are also trained to extend their leg through a modified squeeze cage for unanesthetized bleeding from the saphenous vein. Once the acclimation is completed, the animals are shown to be relaxed during the procedure. One adult female continued to nurse her neonate infant through the venipuncture. This behavior modification is intended to reduce stress and increase safety for the animals and the technicians. VHS, 27 min. This tape also provides a look at the corral facility at the Tulane Regional Primate Research Center at Tulane University.

Training Medical Behaviors in Orang-utans at Brookfield Zoo (1989). Produced by the Brookfield Zoo, Chicago Zoological Society. Distributed by Ceil Wilson, Brookfield Zoo, 3300 Gold Road, Chicago, IL 60513
WRPCRC call number: VT0299
Positive reinforcement is used to train diabetic orang utans to voluntarily submit a limb for venipuncture. VHS, 10 min.

Journals and Newsletters

NOTE: Call numbers are included for publications contained in the collection of the National Agricultural Library (NAL). While NAL does not sell audiovisuals or publications from its collection, materials may be borrowed by interlibrary loan. Borrowing information can be found on the NAL website http://www.nal.usda.gov/borrow-materials.

American Journal of Primatology
http://www3.interscience.wiley.com/cgi-bin/jhome/34629
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030
USA
The official journal of the American Society of Primatologists that contains research papers on all primate-related subjects including wild and captive animal studies, conservation, and enriching the captive environment.

Animal Keepers' Forum
http://www.aazk.org/
American Association of Zoo Keepers AAZK, Inc.
3601 SW 29th Street, Suite 133
Topeka, KS 66614-2054
USA
NAL call number: QL77.5 A54

This monthly journal of the American Association of Zoo Keepers, Inc. (AAZK) contains regular features such as "Enrichment Options" which highlights psychological stimulation, behavioral enrichment, activity manipulation, and occupational husbandry in zoo and aquarium environments. AAZK is the professional organization for zookeepers in America (primarily in the USA) and holds annual conferences, publishes proceedings, and sponsors special projects that improve animal care.

Animal Technology
http://www.iat.org.uk/
The Institute of Animal Technology
5 South Parade
Summertown, Oxford OX2 7JL
UK
E-mail: journal@iat.org.uk
NAL call number: QL55 I5

This journal is published three times a year by the Institute of Animal Technology. Originally entitled Animal Technology, the journal began including the term welfare in its title in 2002. The journal routinely features short articles, technical notes, or reviews pertaining to enriched housing/caging options or enrichment strategies for various laboratory and farm animals.

Animal Welfare
http://www.ufaw.org.uk
Universities Federation for Animal Welfare
The Old School, Brewhouse Hill
Wheathampstead, Herts AL4 8AN
UK
Phone: (0) 1582 831818
Fax: (0) 1582 831414
E-mail: ufaw@ufaw.org.uk
NAL call number: HV4701 A557

This peer-reviewed quarterly journal includes articles on scientific research and technical studies related to the welfare of animals kept on farms, in laboratories, as companions, in zoos, or managed in the wild. The journal includes many environmental enrichment articles and international technical reports.

Animal Welfare Information Center Bulletin
Animal Welfare Information Center
National Agricultural Library
10301 Baltimore Avenue
The bulletin is published quarterly and contains animal care and use articles, regulatory updates, and grants information. Articles are geared toward researchers, exhibitors, and educators who must comply with the Animal Welfare Act. Environmental enrichment articles are frequently featured. There is no fee for the subscription and all issues are posted on the website in full text.

Applied Animal Behaviour Science
http://www.elsevier.com
Elsevier Science
Customer Service Department
6277 Sea Harbor Drive
Orlando, FL 32887-4800
USA
Phone: 1-877-839-7126 (Toll-free number) for US Customers
Phone: 407-345-4020 for Customers outside the US
Fax: 407-363-1354
Email: usjcs@elsevier.com
NAL call number: QL750 A6

This is an international peer-reviewed journal that publishes information on the behavior of domesticated and utilized animals. Topics include the behavior of lab, zoo, and laboratory animals in relation to animal management and welfare, companion animal behavior and problems, and the behavior of wild animals from an applied perspective. The journal features environmental enrichment research on nonhuman primates in zoo and laboratory contexts.

Comparative Medicine
http://www.aalas.org/publications/index.aspx#CM
AALAS
9190 Crestwyn Hills Drive
Memphis, TN 38125-8538
USA
Phone: 901-754-8620
E-mail: info@aalas.org

This bi-monthly journal was called *Laboratory Animal Science* prior to the year 2000. The journal covers topics such as animal models of human diseases, research applications, and diseases of laboratory animals. Abstracts are available free from the American Association for Laboratory Animal Science (AALAS) website. Members can view entire issues on the web.

Contemporary Topics in Laboratory Animal Science
AALAS
9190 Crestwyn Hills Drive
Memphis, TN 38125-8538
USA
Phone: 901-754-8620
E-mail: info@aalas.org

A journal published six times each year that provides articles relevant to a wide cross-section of people working with laboratory animals. The journal is peer reviewed and serves as the official communication vehicle for the American Association for Laboratory Animal Science (AALAS).
This bimonthly international primatology journal is the official journal of the European Federation for Primatological Research. Topic areas range from microbiology to paleontology. The journal features articles on primate learning, social behavior, care and use, and environmental enrichment. Subscribers may view issues online from the website.

Published eight times per year, the journal is dedicated to exchanging news, information, and ideas between zoos of the world. Feature articles sometimes describe environmental enrichment techniques.

A peer-reviewed quarterly journal jointly published by PYSETA and The American Society for the Prevention of Cruelty to Animals. The journal publishes articles and commentaries on methods of experimentation, husbandry, and care that enhance the welfare of animals. The website contains issue contents, abstracts, and guidelines for authors.

This journal publishes articles on primates as research models, veterinary medicine, husbandry and management in the
laboratory, wildlife management, behavioral and social needs related to medical conditions, and captive primate care.

Lab Animal
http://www.labanimal.com
Lab Animal Subscription Department
P.O. Box 5054
Brentwood, TN 37024-5054
Phone: 1-800-524-2688
Email: labanimal@natureny.com
USA
NAL call number: QL55 A1L33

The journal is published 11 times a year and emphasizes the proper management and care of laboratory animals. It contains articles that discuss information, ideas, methods, and materials for animal research professionals. It routinely contains articles dealing with environmental enrichment techniques and occasionally devotes an issue to the topic. The last issue of the year is the next year's Lab Animals Buyers Guide which contains ordering information for laboratory animals, products such as enrichment devices, and services.

Laboratory Animals
http://www.roysocmed.ac.uk/pub/la.htm
Royal Society of Medicine Press, Ltd.
1 Wimpole St.
London W1G 0AE
UK
Phone: 44 (0)20 7290 2921
Fax: 44 (0)20 7290 2929
Email: rsmjournals@rsm.ac.uk
NAL call number: QL55 A1L3

This is the official journal of several organizations including the Laboratory Animal Science Association (LASA), Gesellschaft für Versuchstierkunde, Nederlan dse Vereniging voor Proefdierkunde, Schweizerische Gesellschaft für Versuchstierkunde, and the Federation of European Laboratory Animal Science Associations. It contains occasional articles on environmental enrichment for nonhuman primates as well as articles on primate behavior and neurosciences. It publishes European and international working group reports and guidelines on animal care and use topics.

Laboratory Primate Newsletter
http://www.brown.edu/primate
Box 1853, Psychology Department
Brown University
Providence, RI 02912
USA
Phone: 401-863-2511
Fax: 401-863-1300
Email: Judith_Schrier@brown.edu
NAL call number: SF407 P7L3

This newsletter is a quarterly publication geared towards researchers who study or use nonhuman primates and includes conference papers, announcements, grants, research and education opportunities, employment opportunities, and recent books and articles listed by topic with abstract. Full text issues are available on the web in HTML and PDF formats and are no longer being professionally printed. There are three mailing lists associated with the LPN to which you can subscribe by sending one of the following messages to LISTSERV@BROWN.EDU:
(1) “Subscribe LPN-WARN” - Sends only the announcement that a new issue has been added to the website
(2) “Subscribe LPN-L” - Sends a non-graphic text of the latest issue
(3) “Subscribe LPN-PDF” - Sends a large PDF file of the latest issue
This journal publishes original papers, abstracts and contributions from the meetings of national and international primatological societies, from symposia as well as special issues like surveys on primatological activities in habitat countries and census of captive primates in the Old World countries. Papers come from any area of primatology, including breeding and husbandry, behavior, evolutionary biology, morphology, physiology and palaeontology.

Ratel

http://www.abwak.org/ratel_journal/
The Association of British Wild Animal Keepers
David Fowler
c/o Cotswold Wildlife Park
Burford Oxon OX18 4JW
UK
Email: apollo@derf33.freeserve.co.uk
NAL call number: QL77.5 R37

A bi-monthly journal written by British animal keepers for animal keepers and is a source of up to date information on animal welfare and husbandry. It contains feature articles on animal welfare and husbandry, news and announcements, and the column *From Rags to Enrichment*. The website contains a collection of some recently published articles and is updated regularly.

The Shape of Enrichment

http://enrichment.org
The Shape of Enrichment, Inc.
1650 Minden Drive
San Diego, CA 92111-7124
USA
Fax: 858-279-4208
Email: shape@enrichment.org
NAL call number: HV4737 S53

This is a quarterly newsletter that focuses on environmental enrichment for captive animals. It also operates an enrichment and training video library and organizes the bi-yearly international conference on environmental enrichment.

Zoo Biology http://www3.interscience.wiley.com
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030
USA
Phone: 201 748 6645
E-mail: subinfo@wiley.com
NAL call number: QL77.5 Z6

This is a bi-monthly journal published in association with the American Zoo and Aquarium Association. The journal contains scientific articles on all aspects of zoo biology including behavior, nutrition, veterinary medicine, and
husbandry and frequently publishes environmental enrichment studies.

Bibliography

The list of bibliographic citations covers the publication years 1992 through 1998. While peer-reviewed journals provide the bulk of the citations, non-peer-reviewed material from newsletters, bulletins, and conference proceedings are also included. The data bases searched include AGRICOLA, BIOSIS Previews, CAB Abstracts, MEDLINE, and Zoological Record. Other sources, such as bibliographic material used by the USDA APHIS/Animal Care Monkey Business Team, were also used to discover relevant citations. Abstracts are included only when the data base is Federally-funded and in the public domain (i.e., AGRICOLA and MEDLINE). If the document can be found in the National Agricultural Library (NAL) collection, the NAL call number is given. [While NAL does not sell audiovisuals or publications from its collection, materials may be borrowed by interlibrary loan. Borrowing information can be found on the NAL website http://www.nal.usda.gov/borrow-materials. Special permission to include abstracts from the Journal of Applied Animal Welfare Science has been provided by the editor. Please note that the citations are largely arranged by taxa, however, many articles are relevant to the field of environmental enrichment and not just a particular species.

- Articles:
 - General Environmental Enrichment
 - General Primate Enrichment
 - Enrichment Plans
 - Great Apes and Gibbons
 - Macaques
 - Marmosets and Tamarins
 - New World Monkeys
 - Old World Monkeys
- Books and Conference Proceedings

Bibliography: Articles

General Environmental Enrichment

NAL call number: HV4737 S53
Descriptors: zoo animals, birds, mammals, Christmas tree as enrichment.

NAL call number: SF408 S435 1998
Descriptors: zoos, animal care, parasites, stress, risks from enrichment.

NAL call number: HV4761 A5
Descriptors: primates, laboratory, enrichment.

NAL call number: QL76.5 U6A472
Descriptors: zoos, environmental enrichment.

NAL call number: SF408 W55 1996
Descriptors: zoo mammals, stress, behavior, enrichment options, environmental complexity.

NAL call number: QL77.5 Z6
Descriptors: stress, zoo animals, social behavior, environmental enrichment.

NAL call number: QL55 A133
Descriptors: novelty, benefits, stimulus, laboratory animals.

NAL call number: QL77.5 Z6
Descriptors: training, animal care, social interaction, psychological well-being, techniques.

Descriptors: foraging, food as environmental enrichment, behavior stimulus.

NAL call number: QL77.5 R37
Descriptors: zoo primates, environmental enrichment.

NAL call number: QL77.5 R37
Descriptors: zoo animal enrichment, wildlife parks.

NAL call number: HV4737 S53
Descriptors: zoo animal enrichment, enrichment programs.

NAL call number: QL76.5 U6A472
Descriptors: animal welfare, zoos, visitors.

Descriptors: zoo mammals, housing, activity, behavior.

NAL call number: SF408 5435 1998

Descriptors: context, social housing, novelty, exhibit animals, reintroduction programs, animal welfare.

NAL call number: aHV4701 A952

Descriptors: data collection, behavioral goals, strategies, social behavior.

NAL call number: QL76.5 U6A472

Descriptors: exhibit design, behavioral stimulation, positive reinforcement, zoos.

NAL call number: SF408 5435 1998

Descriptors: positive reinforcement, behavioral enrichment, stimulus.

NAL call number: QL751.6 S75 1993

Descriptors: livestock, causes, motivation, stimulus, repetition.

NAL call number: SF408 5435 1998

Descriptors: zoo mammals, behavioral enrichment.

NAL call number: QL55 A1L33

Descriptors: psychological well-being, laboratory animals, environmental complexity.

NAL call number: SF408 W55 1996

Descriptors: zoo mammals, design, behavior, enrichment options, environmental complexity.

Descriptors: species-typical behavior, zoos, mammals.

NAL call number: SF408 5435 1998

Descriptors: philosophy, zoo animals, environmental enrichment methods.

Martin, S. (1996). **Training as enrichment.** *American Zoo and Aquarium Association Regional Conference*
Proceedings 1996:139-143.
NAL call number: QL76.5 U6A472
Descriptors: positive reinforcement, mammals, behavioral management.

NAL call number: HV4737 S53
Descriptors: zoos, mammals, environmental enrichment.

NAL call number: SF408 S435 1998
Descriptors: Zoos, future areas for research, applications.

NAL call number: SF408 S435 1998
Descriptors: methods of assessment, zoos, review.

Descriptors: wallaby, lion, wolf, bear, elephant, zebra, deer, Japanese macaque, chimpanzee, behavioral repertoire, activity budgets, feeding behavior.

NAL call number: SF406 G95 1996
Descriptors: guidelines, laboratory animal housing, management, veterinary medicine, physical plant.

NAL call number: QL750 A6
Descriptors: natural behavior, activity levels, zoos, farms, laboratories.

NAL call number: QL77.5 R37
Descriptors: environmental enrichment, zoos, mammals.

NAL call number: QL77.5 R37
Descriptors: environmental enrichment, zoos, mammals.

Descriptors: macaques, chimpanzees, visitor effects on animal activity, zoos.

NAL call number: QL55 H8
Descriptors: housing preferences, animal welfare, enrichment.

Descriptors: zoos, stereotypies, mammals.

NAL call number: QL55 A1L3
Descriptors: enrichment, behavior, activity levels, distress, confounding.

Poole, T. (1997). **Identifying the behavioural needs of zoo mammals and providing appropriate captive environments.** *RATEL* 24(6):200-211.
NAL call number: QL77.5 R37
Descriptors: behavior, enrichment, zoos, mammals.

NAL call number: SF408 S435 1998
Descriptors: behavior, enrichment, zoos, mammals.

NAL call number: QL55 H8
Descriptors: enrichment, animal training, husbandry.

NAL call number: HV4701 A557
Descriptors: role of enrichment in context of zoo missions, tradeoffs, visitor expectations, animal welfare, naturalistic exhibits.

Descriptors: environmental enrichment, behavior, zoo animals.

NAL call number: SF408 S435 1998
Descriptors: zoo animals, life history, behavioral ecology.

NAL call number: SF408 S435 1998
Descriptors: review, history, rewards, zoos.

NAL call number: SK351 A8
Descriptors: zoos, housing, animal welfare.

NAL call number: QL76.5 U6A472
Descriptors: zoos, environmental enrichment.
NAL call number: QL76.5 U6A472
Descriptors: zoos, behavioral enrichment, Alabama.

Descriptors: zoos, boredom, environmental enrichment.

NAL call number: QL77.5 A54
Descriptors: zoos, public perception, animal care.

NAL call number: HV4701 A557
Descriptors: comparisons, preferences, behavioral flexibility, adaptation, animal welfare.

General Primate Enrichment

NAL call number: QL750 A6
Descriptors: proceedings, veterinary ethology, behavior, veterinary ethology.

NAL call number: SF405.5 A23
Descriptors: animal behavior, stress, housing, welfare.

NAL call number: SF601 C66
Descriptors: behavior, wellbeing, caging, toys, social behavior, stereotypies, locomotion, visual stimuli.

NAL call number: 410.9 P94
Although social housing is desirable for social species of nonhuman primates, circumstances arise whereby social housing is precluded (for example, certain kinds of infectious disease or toxicologic research, when the health of the animal(s) would be compromised by social housing, and animals which respond behaviorally in an inappropriate manner to social housing). Nonsocial alternatives that provide increased environmental complexity to the home cage should then be considered. Nonsocial "environmental enrichment" schemes can be designed to enhance the expression of an individually housed nonhuman primate's locomotive/postural, manipulative, and foraging behaviors. In this way, nonsocial, but species-typical, behaviors can be promoted in the single cage housing condition.
Descriptors: housing, husbandry, enrichment, exceptions.
Simple toys as enrichment devices have been associated with a rapid decline in their use by nonhuman primates. Other facets of toy presentation have not been described previously. For example, a comparison of the effect(s) of an enrichment device between two facilities should be validated if enrichment recommendations are to be made that affect diverse research facilities across the country. Additionally, a comparison of two methods of presentation (one highly accessible to the animal and the other less accessible) of the same enrichment device for potential differences in efficacy could provide direction in implementing an enrichment program based on simple toys. The handling of enrichment devices by nonhuman primates can lead to the spread of microbial contamination. The typical enrichment program rotates enrichment devices among animals to maximize the variety of stimuli available to each primate in the most economic manner. An adequate sanitation program is therefore pivotal to minimizing the potential for enrichment devices to be fomites. We conducted three experiments that addressed these issues. The results confirmed that, although the presence of a simple toy reduced behavioral pathology, there was variability in behavioral effect for an enrichment technique between facilities. Two methods of presentation (on floor and suspended) of a simple toy did not produce any significant differences in use. Finally, we demonstrated that microbial growth can persist on enrichment devices after they have been sanitized in a commercial cagewasher.

Descriptors: toys, sanitation versus environmental enrichment, microbial growth.

NAL call number: SF405.5 A23
Descriptors: human/animal interaction, social enrichment, positive reinforcement, novelty.

NAL call number: QL55 H8
Descriptors: primates, laboratory, enrichment.

NAL call number: 410.9 P94
Before implementing an environmental enrichment program for nonhuman primates, several issues should be considered. The assignment of enrichment tasks can be made to caretakers, a dedicated "enrichment technician," volunteers, students or individuals with training in behavioral science. Determining the enrichment techniques to be used must take into account personnel time available; the species, age, sex, and individual histories of the nonhuman primates; and experimental protocols for which animals are being maintained. Identifying the most beneficial way to use the available personnel time must be tailored for each institution. To meet federal regulations, records must be kept of the environmental enhancements available to each nonhuman primate. Good record-keeping will allow appropriate evaluation of the program. This evaluation should involve the animals' responses to the enrichment opportunity, cost and durability of enrichment items, human and nonhuman safety considerations, and personnel required. The well-being of captive nonhuman primates will be most improved if well-informed decisions are made in developing and managing environmental enrichment programs.
Descriptors: record keeping, evaluation, enrichment plans.

NAL call number: QL77.5 A54
Descriptors: Burnet Park Zoo, enrichment strategies.

It has been suggested that Mozart's music may have beneficial effects on the performance of cognitive tasks in humans. In the present study the effects of Mozart's piano music, white noise, simple rhythm and silence were studied on the performance of a delayed response (DR) task in monkeys. The acoustic treatments were given for 15 min, either before or during DR testing. The acoustic treatments did not affect DR performance when given before testing. However, Mozart's piano music played during DR testing caused a significant deterioration in the performance of the monkeys, whereas white noise improved it. It is suggested that Morzart's music serves as distractive stimulation during DR performance thus affecting working-memory-related neuronal processing and performance. White background noise, on the other hand, may improve DR performance by protecting against environmental distraction during testing.
Descriptors: nervous system, sensory stimulus, music, memory, background noise.

Descriptors: costs of enrichment, laboratory primates, behavior.

Descriptors: laboratory primates, animal welfare, cage size.

Descriptors: laboratory primates, psychological well-being, review.

Descriptors: food enrichment, foraging behavior.

Descriptors: zoo primates, Europe, care, enrichment.

Descriptors: manipulanda, novelty, zoos.

Descriptors: lab primates, enrichment, animal wellbeing.
NAL call number: QL77.5 R37
Descriptors: waste paper, zoo primates.

NAL call number: SF407 P7L3
Descriptors: tunnel, social behavior, laboratory, exploration.

NAL call number: QL55 A1L3
Descriptors: foraging behavior, laboratory, activity level, behavioral changes.

NAL call number: QL55 A1I43
Descriptors: audiovisuals, directories, websites, listservs, electronic resources.

NAL call number: SF405.5 C36
Descriptors: animal training, rewards, conditioning, behavior, animal welfare.

Descriptors: psychological wellbeing, species-specific behavior, laboratory and zoo primates.

NAL call number: QL77.5 Z6
Descriptors: rearing methods, repetitive motor patterns, atypical behavior, lemurs, tamarins, macaques, spider monkeys, baboons, apes.

NAL call number: QL737 P9J66
Descriptors: cage complexity, laboratory, activity levels.

Descriptors: zoos, measuring behavior, activity.

NAL call number: HV4737 S53
Descriptors: zoos, primates, environmental enrichment.

NAL call number: SF407 P7L3
Descriptors: risks, choking, ring toys, devices.

NAL call number: QL55 A1L33
Descriptors: laboratory primates, methods, assessing enrichment.

Descriptors: guidelines and regulations, enrichment programs, inanimate enrichment, feeding enrichment, substrates, animate enrichment.

NAL call number: QL55 H8
Descriptors: animal welfare, assessing enrichment options.

NAL call number: HV4701 A557
Descriptors: foraging, laboratories, feed processing, zoos, animal welfare.

NAL call number: SF407 P7N66 1995
Descriptors: enrichment programs, behavior, devices, social groups.

NAL call number: HV4701 A557
Descriptors: novelty, manipulanda, complexity, ecological approaches.

NAL call number: SF407 P7L3
Descriptors: novelty, manipulanda, complexity.

Descriptors: positive reinforcement, rewards, observations.

NAL call number: QL55 A1L33
Descriptors: laboratory, environmental enrichment.

NAL call number: aZ7996.P85E58 1992
Descriptors: bibliography, information resources.

NAL call number: QP1 P4
Descriptors: grooming, social contact, positive reinforcement.

NAL call number: HV4701 A557
Descriptors: group housing, aggression, boredom, resource access.

NAL call number: SF408 W55 1996
Descriptors: introductions, aggression, social behavior.

NAL call number: QL55 A1L33
Descriptors: housing, social interactions, laboratory.

Descriptors: social housing, isolation housing, experimental studies, husbandry.

Enrichment Plans

NAL call number: 410.9 P94

Before implementing an environmental enrichment program for nonhuman primates, several issues should be considered. The assignment of enrichment tasks can be made to caretakers, a dedicated "enrichment technician," volunteers, students or individuals with training in behavioral science. Determining the enrichment techniques to be used must take into account personnel time available; the species, age, sex, and individual histories of the nonhuman primates; and experimental protocols for which animals are being maintained. Identifying the most beneficial way to use the available personnel time must be tailored for each institution. To meet federal regulations, records must be kept of the environmental enhancements available to each nonhuman primate. Good record-keeping will allow appropriate evaluation of the program. This evaluation should involve the animals' responses to the enrichment opportunity, cost and durability of enrichment items, human and nonhuman safety considerations, and personnel required. The well-being of captive nonhuman primates will be most improved if well-informed decisions are made in developing and managing environmental enrichment programs.
Descriptors: record keeping, evaluation, enrichment plans.

NAL call number: QL76 A46 1993
Descriptors: planning, evaluation, enrichment plan, education, zoo primates.

NAL call number: SF407 P7P79 1988
Primate Environmental Enhancement Plans. 1990-Present
Collection of primate environmental enhancement plans prepared by research institutions and zoos from around the United States. Reports were prepared to meet USDA Animal Welfare Act mandate for providing for the "psychological well-being" of nonhuman primates.
NAL call number: HV4737 P75

NAL call number: QL55 A1L33
Descriptors: psychological well-being, Animal Welfare Act, laboratory macaques.

Great Apes and Gibbons

NAL call number: QL737 P9A5
Descriptors: social behavior, crowding, captivity.

NAL call number: QL77.5 Z6
Descriptors: substrate, foraging behavior, zoos, activity.

NAL call number: QL737 P9A5
Descriptors: social behavior, dominance, aggression.

NAL call number: SF405.5 A23
Descriptors: social housing, foraging, dominance, abnormal behaviors.

NAL call number: QL737 P9A5
Descriptors: human-animal bond, social behavior, training.

NAL call number: QL77.5 Z6
Descriptors: spatial behavior, territoriality, zoos, social behavior.

NAL call number: QL750 A6
Descriptors: chimpanzees, timing, predictability of feeding, species-appropriate behavior.
NAL call number: QL737 P9A5
Descriptors: human-animal bond, training, social behavior.

NAL call number: QL77.5 Z6
Descriptors: human-animal bond, social behavior, dominance.

NAL call number: HV4701 J68

The use of destructible objects or toys as enrichment for nonhuman primates has had promising results in terms of increased use and positive behavioral effect. The purpose of this project was to determine the use and durability of a number of inexpensive, destructible toys provided one at a time or several at once. Nine singly caged chimpanzees were provided with eight different toys made of plastic, vinyl, or cloth and the frequency of use of the toys was determined during 15 min trials twice per day. The toy was removed when it was destroyed or when it was not contacted during four trials. The chimpanzees contacted the toys for an average of 11 times per trial, and the use of the individual toys was significantly higher when provided one at a time rather than all at once. Use of the toys was fairly stable over time, and the toys remained in the cages an average of 3.2 days. The durability of the toys was related to the type of toy, i.e., more flexible cloth and vinyl toys lasted longer than rigid plastic toys. The destructible toys were used significantly more often than other permanent cage toys or televisions. Toy use was not related to age, level of abnormal behavior or use of existing permanent toys or television. The implications of the results were related to the management of an environmental enrichment program, and indicate that the provision of flexible, inexpensive toys one at a time can be an effective method of enrichment for captive chimpanzees.
Descriptors: use, durability, timing, affects of age or abnormal behavior.

NAL call number: QL737 P9J66

Although positive behavioral consequences have been attributed to feeding enrichment, physiological changes may also occur. In this study, the body weight records of a large chimpanzee colony were reviewed to determine if body weight was affected by the implementation of a daily enrichment program, including food items offered three to four times per week. Comparing the mean body weight by age groups indicated that the weight of female chimpanzees was significantly greater after feeding enrichment but that male body weight did not differ.

NAL call number: HV4701 A557
Descriptors: *Pan troglodytes*, juveniles, behavior, evaluation, woodchips.

NAL call number: QL737 P9A5

The evaluation of environmental enrichment techniques for nonhuman primates over long periods of time has had mixed results. Some studies report rapid habituation to new enrichment items, while others note continued use. We have investigated the use of three different enrichments that had been available to paired and singly caged chimpanzees for several years. Twenty subjects were observed during 200 hr of scan sampling while singly caged and while pair housed. Each subject had a variety of enrichments available and their use of a television, ball, and mirror were recorded. The chimpanzees had previous exposure to all of the items: televisions had been available for a mean of 22.75 months, balls had been available for 55.9 months, and mirrors had been available for 25.9 months. The results indicated that the chimpanzees continued to use the enrichments for small amounts of time (0.27%-1.53% of the observations) even after such prolonged exposure. Television and ball use were significantly higher than mirror use.
Housing condition was not a significant factor in the analyses, contrary to expectations. We concluded that several simple enrichment items may be effective in offering variety and choices to the nonhuman primate and can be one element in a comprehensive environmental enhancement plan. Descriptors: chimpanzees, laboratory, devices, enrichment plans.

NAL call number: QL76.5 U6A472
Descriptors: gorilla, zoos, behavior.

Descriptors: gorilla, zoos, substrate, social behavior.

NAL call number: QL76.5 U6A472
Descriptors: Hylobates, housing, environmental enrichment.

NAL call number: SF407 P7L3
Descriptors: social behavior, dominance, social housing.

NAL call number: SF407 P7L3
Descriptors: novel stimulus, activity, behavior.

NAL call number: HV4701 A557
Descriptors: gorilla, chimpanzee, puzzle feeders, behavioral response, feeding behavior.

NAL call number: QL77.5 Z6
Descriptors: social housing, spatial behavior, pair bonds.

NAL call number: 410 Z724
Descriptors: manipulanda, habituation, novel objects.

Descriptors: Pan troglodytes, cage props, environmental enrichment, chimpanzees.

NAL call number: QL55 15
Descriptors: goldfish, habituation, laboratory chimps, aquariums.
NAL call number: SF407 P7L3
Descriptors: *Pan troglodytes*, infants, shredding paper.

NAL call number: 410.9 P94
At many facilities, limitations of the physical environment have reduced the opportunity for captive chimpanzees to live in large, naturalistic social groups. Convex mirrors used to increase visual access of neighboring groups may improve the social environment. This was tested in a study of 28 chimpanzees (*Pan troglodytes*) group-housed in conventional indoor/outdoor runs. A total of 47.8 hours of behavioral observations were conducted and comparisons made across three conditions: no mirror present, a mirror present with visual access to neighboring conspecifics, or a mirror present with visual access to the neighbors' empty run. When the mirror gave subjects visual access to neighboring animals, facial expressions, sexual, and agonistic behaviors increased, whereas affiliative behavior decreased compared with when no mirror was present. When the mirror gave subjects visual access to a neighbors' empty run, facial expressions and sexual behavior increased compared with when no mirror was present. When the mirror gave subjects visual access to a neighbor's empty run, agonism decreased compared with when a mirror gave subjects visual access to neighboring animals. When subjects had visual access to neighbors, they used the mirror 30% of the total data points; while they had visual access to the neighbors' empty run, they looked during 24% of the total data points. Juveniles' use of the mirror increased over time while adults' use remained stable. Adult males used the mirror less than did the other subjects. These findings indicate that a mirror allowing visual access to neighboring conspecifics has potential as an enrichment device that affects social behavior.
Descriptors: mirrors, visual access, age dependence, social behavior.

NAL call number: QL76.5 U6A472
Descriptors: social behavior, novelty, zoo primates, gorillas.

NAL call number: QL76.5 U6A472
Descriptors: *Pan troglodytes*, enrichment, zoos.

NAL call number: QL750 A6
Descriptors: quiet, ventilation noise, caretaker sounds, vocalization playbacks, rainforest sounds, behavior, stress, age differences.

NAL call number: HV4701 A557
Descriptors: abnormal behavior, novel stimulus, social behavior, treatment.

NAL call number: QL77.5 Z6
Descriptors: zoos, social behavior, manipulanda, dominance.

NAL call number: 410 Z724
Descriptors: stress from visitors, effects on social behavior of chimpanzees, play.

NAL call number: 410 Z724
Descriptors: tool use, foraging, social behavior, economic costs, benefits for wellbeing.

NAL call number: HV4701 A557
Descriptors: devices, activity, behavior.

NAL call number: HV4701 J68
Environmental complexity plays an integral role in the activity and psychological well-being of primates. The experiment described in this article evaluated the effects of nonintrusive, inexpensive, and easily managed behavioral enrichment devices on the behavior of a group of captive western lowland gorillas. Devices used included cardboard boxes containing food items, paper bags containing food items, burlap rags, willow, and maple browse. The enrichment devices increased foraging, social play, and solitary play behaviors. Sedentary behaviors decreased. Rags, bags, browse, and boxes did not statistically decrease the incidence of regurgitation/reingestion or coprophagy. Depending on the type of enrichment item used, the effects on agonism and manipulation of enrichment item were variable. To make informed management decisions about the psychological well being of captive animals, it is important to objectively quantify and examine the influences on their behavior.
Descriptors: manipulanda, toys, zoos.

NAL call number: BF671 J6
Descriptors: rehabilitation environments, learning, imitation.

NAL call number: SF407 P7L3
Descriptors: toys, chimpanzees, laboratory.

NAL call number: QL737 P9A5
Descriptors: foraging, diet enrichment, stereotypies, behavior.

NAL call number: QL737 P9A5
Descriptors: wild chimpanzees, toolmaking, drinking, manipulanda.

Descriptors: diet, food preferences, foraging, zoos.

Descriptors: zoos, tool use, age, play.

NAL call number: QL76.5 U6A472
Descriptors: zoos, grooming, manipulanda, cognition.

NAL call number: QL737 P9A5
Descriptors: grooming, social behavior, play, complex housing, zoos.

NAL call number: QL737 P9F6
Descriptors: obesity, environmental enrichment, devices, novelty, zoos.

Descriptors: abstract, tool use, manipulanda, social behavior.

NAL call number: QL77.5 R37
Descriptors: devices, zoos, foraging behavior.

Macaques

NAL call number: HV4701 A557
In order to assess the environmental enrichment value of a small swimming pool for captive juvenile rhesus macaques (*Macaca mulatta*), observations of social and individual behaviours were made during baseline and experimental (pool) conditions. When the pool was available there was less social grooming and cage manipulation, and more play. Most of the monkeys engaged in diving and underwater swimming. The presence of pieces of banana at the bottom of the pool reduced these water-related activities, whereas when raisins were spread along the bottom or when there was no food in the water, there was more diving and less aggression. Certain effects tended to vary with dominance status, but individual differences appeared more important than social status in determining reactions to the water. The provision of a small swimming pool for captive macaques is an effective contribution to improving their welfare.
Descriptors: rhesus macaque, swimming pool, social behavior.

NAL call number: QL737 P9A5
Descriptors: atypical behavior, importance of environmental enrichment, devices.

Two environments were provided to laboratory rhesus monkeys to determine if the animals spent more time (for the purposes of this study, defined as the cage side preference) in an enriched cage side than an unenriched cage side. The side (right or left) of a double-wide cage in which the animal spent the most time (as determined by Chi square analysis) was initially determined during baseline observations. The "nonpreferred" side was then enriched during the experimental phase of the study. The enrichment consisted of a perch, a Tug-A-Toy suspended inside the cage, a Kong toy suspended on the outside of the cage, and a grooming board mounted on the outside of the cage. No statistically significant changes in use of the enrichments were detected over time. Fifty percent of the animals switched cage side preference to the enriched side during the study. All subjects showed reduced behavioral pathology during exposure to the enriched environment with a return of behavioral pathology when the enrichments were removed.

Descriptors: preference testing, cage size, toys, laboratory animals.

A preference test paradigm was used to assess the value of two enrichment techniques for rhesus macaques (*Macaca mulatta*): (1) a Kong toy stuffed with food treats and (2) a fleece board covered with particulate food. The duration of time spent in the enriched cage side was compared with that spent in the unenriched cage side. Additionally, the number of cage side changes made during an observation interval and the duration and frequency of occurrence of select behaviors were recorded. Half the subjects altered their cage side preference during the experimental condition, and a fifth animal reversed side preference in the postexperimental phase. Subjects spent a mean time of 14% of a session engaged with the foraging devices. The occurrence of several behaviors, including self-directed and locomotor activities, varied significantly with the experimental condition. These results were compared with data from a previous preference study of nonnutritive enrichments, and a hypothesis regarding the relative value of different types of enrichment was developed.

Descriptors: Kong toy, foraging board, cage preferences, nonnutritive enrichment.

Descriptors: *Macaca nigra*, zoos, flowers.

Primates are used extensively in a variety of research settings. Federal regulations in the U.S. mandate that caretakers provide for the 'psychological well-being of laboratory primates'. One of the difficulties in implementing this law has been both in the definition of psychological well-being and in the need to deal with each primate species and, in some cases, age or sex class, uniquely. Non-human primates exhibit distinct individual differences in their behavioural and physiological responses to experimental challenges and caretaking procedures. We have been investigating what factors can predict some of these individual differences, and have found that factors both intrinsic and extrinsic are significant. Extrinsic factors found to predict individual differences in response to stressors include the nature and prior experience with the challenge, the presence of familiar peers and availability of social support. Intrinsic factors include cognitive interpretations of the challenge and temperamental differences in reactivity. These studies highlight the importance of understanding the context and individual psychology of macaques in order to provide laboratory environments conducive to their welfare, and in order to understand the impact experimental and caretaking procedures are likely to have on the health and welfare of our subjects.

Descriptors: *Macaca nemestrina*, *Macaca radiata*, stress, individual differences, psychology.
Some laboratory primates are more likely than others to react to anxiety-provoking stressors. Individuals that overreact to stressors may experience diminished psychological well-being and would be inappropriate for some experiments. The differences between reactive and nonreactive individuals may be reflected in heart period and respiratory sinus arrhythmia (RSA). Using surface electrodes and radio telemetry, we measured these two cardiac variables in seven male and ten female singly caged longtailed macaques (*Macaca fascicularis*) when they were exposed to two stressors, a sudden noise (whistle test) and an unfamiliar technician wearing capture gloves (glove test). Behavior was videotaped during both tests. For the whistle test, cardiac data were recorded before, during, and after two 1 minute whistle blasts separated by 90 min. For the glove test, data were recorded in 1 minute blocks every 8 minutes over 96 minutes before, during, and after 1 minute exposure to the gloved technician. Heart period was decreased and RSA was suppressed during both the whistle and glove exposures. After the whistle test, the cardiac activity of most subjects returned to baseline levels within 10 minutes. The glove test produced more extended suppression, with greater individual differences, than the whistle test. There were greater individual differences in RSA than in heart period. These enhanced individual differences were used to define stress reactors that differed from nonreactors in their cardiac data profiles. Of 16 subjects that completed the glove test, five were identified as reactors.

Descriptors: stress, physiology, psychology, *Macaca fascicularis*.

Descriptors: enrichment devices, social housing, manipulanda.

Descriptors: distress, social behavior, laboratory.

Descriptors: individual housing, social behavior, devices.

Descriptors: social behavior, spatial behavior, performance standards, legislation.

Descriptors: gender, social behavior, laboratory housing.

Descriptors: BF671 J6

The authors tested the effects of varying cage size on the behavior of 10 female and 10 male *Macaca fascicularis* by singly caging them for 2 weeks in each of 5 cage sizes, ranging from approximately 20% to 148% of regulation size. Behavior in the regulation cage size, a size 23% smaller, and a size 48% larger did not differ in any analysis. Locomotion was significantly less in the 2 smallest cage sizes. Abnormal behavior occurred only 5% of the time, did not increase as cage size decreased, and did not change significantly over nearly 3 years. Disruption of the normal activity budget in the laboratory environment proved to be a useful indicator of psychological well-being. Moving to a
new room and, to a lesser extent, moving into a new, clean cage, regardless of size, was associated with disrupted sleep the 1st night and suppressed activity, especially self-grooming, the next day.

Descriptors: cage size, activity, self-grooming, abnormal behavior levels.

NAL call number: QL737 P9A5
Descriptors: environmental enrichment, group housing, well-being.

NAL call number: QL77.5 Z6
Descriptors: contact aggression, locomotion, copulation, affiliative behavior.

NAL call number: SF407 P7L3
Descriptors: social behavior, older animals, laboratory housing.

NAL call number: QP1 P4
Descriptors: distress, social behavior, physiological response.

NAL call number: QL737 P9A5
Descriptors: social behavior, group housing.

NAL call number: QL55 A1L3
In the USA, any institution involved in using non-human primates for research has had, for regulatory reasons, to address the psychological needs of these animals. Enriching the environment through the use of foraging devices has been one method and a study was designed to evaluate the short-term effect of a new foraging device on singly-housed cynomolgus monkeys. The study was divided into 3 one-week periods of observation: baseline, device filled with normal ration, and device filled with a novel food. Four behaviours were recorded: foraging, self-directed, hopper feeding, and other behaviours. During the observation periods the device was accepted in preference to the standard hopper style feeder and self-directed behaviours were significantly reduced compared with the baseline period. Changing to a novel food re-kindled interest in the device and reduced the extinguishing effect: i.e. decrease in interest or use of the device. Based on this study, the feeder has been included with several other devices in a rotation programme.
Descriptors: novel food, feeder, Macaca fascicularis, cynomologus macaque, feeding behavior.

NAL call number: HV4701 J68
As part of a behavioral intervention program that identifies and treats individual nonhuman primates exhibiting abnormal behavior, five individually housed pigtail macaques (Macaca nemestrina) were provided with multiple cage toys in an effort to reduce high levels of abnormal behavior. Ten 30-minute observations of each subject were conducted during the baseline condition, and again after novel toys were presented loose inside the cage, and attached to the outside of the cage. The new toys were used during 27% of the observation time. Kong Toys™ were used most consistently by the macaques during the 5-week observation period. Significant decreases in abnormal behavior and cage-directed behavior, as well as significantly increased enrichment use, were evident after the toys were added.
Several of the toys were quickly destroyed, and individual differences were evident in the levels of enrichment use and abnormal behavior. Providing multiple manipulable toys as enrichment for pigtail macaques was effective in reducing abnormal behavior and was an important part of an environmental enrichment program for monkeys who could not be socially housed.

Descriptors: toys, placement on cage, abnormal behavior, single housing.

NAL call number: 410.9 P94

Two breeding groups of rhesus monkeys (*Macaca mulatta*) housed in outdoor enclosures on Key Lois island were observed for 84 hours. Instantaneous scan sampling of a focal animal was used to gather data to test hypotheses concerning frequencies of agonistic and affiliative behaviors as well as differential use of pickle barrels as enrichment objects. Type of barrel used, behavior, and age/sex class of the animal were noted. Barrels were arranged three ways: unattached, on a swivel, and stationary. The behaviors of animals in an enriched environment were compared with control condition animals, which did not have pickle barrels. Animals in an enriched environment accounted for 60.8% (n = 56) of total affiliative contact, 62.2% (n = 399) of total social grooming, and 26% (n = 5) of total agonistic noncontact. A total of 134 scans of barrel use were observed. Analyses of the data showed that swivel and stationary barrels were used the most (55% of all scans of barrel use). Yearlings, juvenile females, and old males used barrels most often (82.8% of all scans of barrel use), although they constituted only 39% of the enriched environment populations. In this study, pickle barrels provided enrichment for young and old animals of both sexes.

Descriptors: *Macaca mulatta*, agonistic and affiliative behavior, age of individual.

Leu, M., C.M. Crockett, C.L. Bowers, and D.M. Bowden (1993). **Changes in activity levels of singly housed long tailed macaques when given the opportunity to exercise in a larger cage.** *Journal of Comparative Psychology* 109(4):368.

NAL call number: BF671 J6

Descriptors: social behavior, activity level, exercise, spatial behavior.

NAL call number: 410.9 P94

The purpose of this study was to extend previous findings on joystick task engagement by a group of pigtail macaques. The goals were to determine the influence of task difficulty on daily levels of task activity and to test the hypothesis that previously identified preferences among identical devices at different locations derived largely from the level of anxiety induced at each location. It was found that the number of daily trials decreased when the task was made more difficult, with more time required to complete each trial with the difficult task. Preferences among locations became more pronounced with the more difficult task. Analysis of errors made on devices at different locations supported the view that preferences did derive, at least in part, from levels of induced anxiety. Locations of enrichment devices may influence not only amount of use but also levels of anxiety in captive monkeys.

Descriptors: *Macaca nemestrina*, anxiety, preference, device location.

NAL call number: QL750 A6

Descriptors: video enrichment, perch provision, social housing, *Macaca nemestrina*.

NAL call number: QL55 A1L3

Environmental enrichment devices are a potential way to enhance psychological well-being in laboratory animals. The effects of such devices need to be systematically evaluated before they are recommended for widespread use. The purpose of this research was to monitor the behavioural and physiological responses of adult female rhesus macaques to a simple enrichment device. The apparatus consisted of a box attached to the monkey's home cage that contained a
radio and a food dispenser, which could be controlled by the monkeys via contact detectors. Radio and food dispenser use were automatically recorded. Whole blood serotonin (WBS), plasma cortisol and abnormal behavior were measured in 5 monkeys before, during and after a 20-week period in which the monkey's cages were equipped with the device. All monkeys used the device (3 of the 5 subjects earned an average of more than 200 food pellets per day). Mean plasma cortisol and whole blood serotonin did not differ across sampling times, suggesting that the apparatus had no effect on basal stress levels. There was an inverse relationship between apparatus use and cortisol levels in 76% of the samples, but only 3 of 17 coefficients were significant. There was a significant but small negative correlation between apparatus use and self-abusive behaviour. This enrichment device was readily used by adult rhesus monkeys and could be adapted for use in a wide variety of laboratory settings.

Descriptors: food dispenser, stress, cortisol, abnormal behavior.

NAL call number: 410.9 P94

Six female and six male adult rhesus macaques were given sticks and nylon balls as an attempt at simple cage enrichment. A latin square design was used to compare behavior during separate 4-week periods with each object and during a control period with no object. Frequency and duration of 15 different behaviors were recorded. Resting was the most common activity which decreased slightly in duration when the stick or nylon ball was present ($P < 0.02$). The mean duration of stick use was longer than that of the nylon ball ($P < 0.01$). No other behaviors changed significantly, including the frequency of abnormal behaviors such as self-abuse, stereotypic acts, and bizarre postures. Generally, these objects were used infrequently and led to few changes in the behavior of singly-caged adult rhesus macaques. However, they did appear to stimulate activity for some individuals.

Descriptors: Macaca mulatta, sticks, nylon balls, behavioral changes.

NAL call number: AL77.5 Z6

Descriptors: toys, sticks, effectiveness, abnormal behavior.

Descriptors: social housing, compatibility, behavior, mixed species.

NAL call number: HV4701 A557

Descriptors: positive reinforcement, capture, handling, training, laboratory.

NAL call number: SF405.5 A23

Descriptors: devices, atypical behavior, single housing.

NAL call number: QL77.5 Z6

Descriptors: foraging, social behavior, devices.

NAL call number: SF407 P7L3

Descriptors: social housing, aggression, dominance.
NAL call number: QL737 P9A5
Descriptors: pigtailed macaques, foraging behavior, puzzles, peanut rewards, control.

NAL call number: QL737 P9I54
Descriptors: spatial behavior, social behavior, importance of vocal communication.

NAL call number: AL737 P9A5
Descriptors: standing water, running water, combination with novel objects, exploration, social contact, grooming, water enrichment.

NAL call number: QL750 A6
Descriptors: video games, video tapes, effects on social behavior, habituation, single housed.

Descriptors: space utilization, social behavior, training.

NAL call number: aHV4701 A952
Descriptors: branches, perches, social housing, single house, foraging.

NAL call number: aHV4701 A952
Descriptors: dominance, pairing, male pairs, stress, methods.

NAL call number: aHV4701 A952
Descriptors: familiarity, dominance, pairing, male pairs, stress, methods.

Descriptors: food puzzles, motivation, preferences, foraging behavior.

NAL call number: SF407 P7L3
Descriptors: group housing, spatial behavior, dominance, social enrichment.

NAL call number: QL737 P9J66
Descriptors: social housing, injury rate, animal welfare.

NAL call number: QL77.5 Z6
Descriptors: food puzzles, group housed macaques, feeder boxes, foraging behavior.

NAL call number: HV4701 A557
Descriptors: foraging behavior, devices, food puzzle.

NAL call number: QL55 I5
Descriptors: pair formations, behavioral interactions, affiliative interactions.

NAL call number: HV4701 A557

NAL call number: HV4701 A557
Descriptors: group housing, separation, dominance, adjustment.

NAL call number: HV4737 R45 1998
Descriptors: group housing, feeding and grooming devices, atypical behavior.

NAL call number: QL737 P9A5
Descriptors: physical, feeding, and sensory enrichment; species-typical behavior; activity.

NAL call number: QL737 P9A5
Descriptors: pair-housed monkeys, inanimate enhancement vs. companionship, behavior.

NAL call number: QL750 A6
Descriptors: stress, social housing, inanimate enrichment, adrenal function.

NAL call number: QL750 A6
Descriptors: long-term effects, inanimate and social enrichment, preferences.

NAL call number: HV4701 A557
Descriptors: social housing, complexity, environmental enrichment.

NAL call number: QL737 P9A5
Descriptors: laboratory primates, social conditions, effects on use of enrichment objects.

NAL call number: QL750 A6
Descriptors: social restriction, maternal competence, infants, visual access to conspecifics.

NAL call number: HV4701 A557
Descriptors: social housing, single housing, therapy length.

NAL call number: 410.9 P94

Environmental enrichment techniques for captive primates are aimed at improving their psychological well-being. While behavioral variables are used to measure changes in psychological well-being, physiologic measures (e.g., heart rate, cortisol response) are sometimes gathered in addition to the behavioral evidence. Some of these physiologic indices measure acute changes in the animals' well-being, limiting their usefulness. Body weight, however, is a measure of physical well-being that may have meaning as a long-term indicator of psychological well-being. We therefore collected body weight data from two groups of rhesus macaques (Macaca mulatta group 1: n = 34, group 2: n = 30) every 8 weeks beginning at the age of 1 year, as they passed through various housing conditions as part of a program to develop a specific pathogen-free breeding colony. One-half of the subjects in each group received a variety of environmental enhancements during all housing conditions; the other half received no enrichment and served as controls. At the beginning of the study (age 1 year), control and enriched subjects did not differ in body weight. Among group-1 subjects, enriched animals weighed significantly more than controls after 4 months of enrichment, and the weight difference was maintained 24 months later. Enriched animals in group 2 never differed in weight from their controls. The order in which different types of enrichment were presented and the extra-cage environment of the two groups differed, which may account for this discrepancy. Group-1 enriched subjects were the only animals that weighed as much as free-ranging rhesus monkeys, and rates of weight gain among all groups of subjects were similar to several populations maintained under more naturalistic conditions.

Descriptors: body weight, enrichment effects, housing conditions, social behavior.

NAL call number: 410.9 P94
Descriptors: compatibility, dominance, aggression, separation.

NAL call number: QL750 A6
Descriptors: hierarchy, lymphocytes, toys, cytokines.

NAL call number: QL737 P9A5
Descriptors: immunosuppression, group housing, social behavior.

NAL call number: HV4701 A557
Descriptors: foraging behavior, environmental enrichment, macaques.

NAL call number: QL737 P9A5
Descriptors: standard cage vs. enriched environment, problem-solving, fearfulness.

NAL call number: BF723 I6I53
Descriptors: development, stability, early experience, surrogate rearing, toys, fear.

NAL call number: SF407 P7L3
Descriptors: perches, device, single housing.

NAL call number: SF405.5 A23
Descriptors: devices, foraging behavior, laboratory primates.

NAL call number: SF407 P7L3
Descriptors: play, devices, social behavior.

NAL call number: QL55 A1L33
Descriptors: psychological well-being, Animal Welfare Act, laboratory macaques.

NAL call number: SF407 P7L3
Descriptors: play, devices, housing, well-being.

Descriptors: pair-housing, preference for computer interactions, cognition, psychology.

Descriptors: macaques, foraging behavior, devices.
Marmosets and Tamarins

NAL call number: QL77.5 R37
Descriptors: enrichment devices, evaluation, golden lion tamarins, endangered species.

NAL call number: QL55 I5
Descriptors: food preferences, group and age differences, behavioral responses.

NAL call number: QL55 H8
Descriptors: marmosets, tamarins, animal welfare, behavior.

NAL call number: SK351 A8
Descriptors: marmosets, tamarins, enrichment, review.

NAL call number: HV4701 A557
Descriptors: olfactory enrichment, novel stimulus, curiosity, exploratory behavior.

NAL call number: QL77.5 Z6
Descriptors: social behavior, play, housing design.

NAL call number: QL750 E74
Descriptors: nesting, spatial use, social behavior, resting.

NAL call number: SF408 5435 1998
Descriptors: zoos, field research, survival, reintroduction, tamarins.

NAL call number: QL737 P9154

Descriptors: space, social groupings, foraging needs, behavioral requirements.

NAL call number: QL77.5 Z6

Descriptors: zoos, foraging behavior, social behavior, reintroduction program.

NAL call number: QL76 I58

Descriptors: golden lion tamarin, cotton top tamarin, Saguinus oedipus, foraging, activity.

NAL call number: HV4737 S53

Descriptors: devices, tamarins, novelty stimulus.

New World Monkeys

NAL call number: SF407 P7L3

Descriptors: laboratory, devices, behavior.

NAL call number: SF407 P7L3

Descriptors: laboratory, devices, behavior.

NAL call number: SF406.3 C66 1997

Descriptors: climate, cage size, complexity, diet, foraging, social environment, handling.

NAL call number: QL737 P9A5

Descriptors: training, stress, handling.

NAL call number: QL737 O9I54

Descriptors: social behavior, fear, aggression, subordinance.

NAL call number: QL55 A1L3
Salivary cortisol is a non-invasive and easy-to-assess measure of the activity of the hypothalamo-pituitary-adrenocortical (HPA) system. Here we report that salivary cortisol determination can be used in squirrel monkeys (Saimiri sciureus) to monitor variations in HPA system activity induced by both housing and experimental conditions. Saliva cortisol assessment has several advantages over blood cortisol analysis such as stress-free frequent sampling, laboratory independence and lower costs. Therefore, this non-invasive measure can be the method of choice in primatological research projects and routine programmes related to the well-being of these laboratory animals.

Descriptors: cortisol, stress, wellbeing, laboratory primates.

NAL call number: QL737 P9A5
Descriptors: normal behavior, locomotion, howler monkey, capuchin.

NAL call number: QL737 P9F6
Descriptors: thermoregulation, grooming, litter, behavior.

NAL call number: QL750 A6
Descriptors: litter, laboratory primates, foraging behavior, wood chips, ground cob, wood wool, garden peat, scattered feed.

NAL call number: QL737 P9J66
Descriptors: squirrel monkeys, laboratory primates, social housing.

NAL call number: HV4737 S53
Descriptors: zoos, New World primates, patas monkey, spider monkey.

NAL call number: SF405.5 A23
Descriptors: toys, enrichment, well-being, social behavior, laboratory primates.

NAL call number: HV4737 S53
Descriptors: Ateles geoffroyi, zoos, devices, behavior.

NAL call number: QL76 I58
Descriptors: social behavior, aggression, dominance, monitoring.

NAL call number: QL737 P9F6
Descriptors: manipulanda, social behavior, jacket.
Old World Monkeys

Adams, R.J. and W.E. Britz (1997). *The baboon suite: novel method to increase the size of a baboon cage to meet the requirements for the care and use of laboratory animals*. Contemporary Topics in Laboratory Animal Science 36(4):70.
NAL call number: SF405.5 A23

NAL call number: QL55 A1L3
The behaviour of group-housed baboons was compared before and after the provision of durable cage toys. One adult male hamadryas baboon and 13 adult female olive baboons living in a large enclosure were observed after they were given seven nylon bones, seven Kong toys and seven Plaque Attackers. Observations were conducted four times per week on each subject over a 6-week period. Abnormal, cage-directed, inactive and self-directed behaviours all significantly decreased after the provision of the toys, while enrichment-directed activities significantly increased. Aggression did not differ between the no toy and toy conditions. Approximately 26% of the baboons were using the toys at any one time, and use of the Kong toys and the bones was higher than that of the Plaque Attackers. Individuals who used enrichment structures already present were also those who used the new toys the most.
Descriptors: Papio, toys, social housing, Kong toys, bones, behavioral effects.

NAL call number: QL737 P9J66
Descriptors: radio, auditory enrichment, single housing.

NAL call number: SF405.5 A23
Descriptors: single housing, foraging behavior, nutrition, diet.

NAL call number: HV4737 S53
Descriptors: food predictability, group behavior, foraging activity.

NAL call number: SF407 P7L3
Descriptors: auditory stimulus, vocalization diversity, frequency.

NAL call number: 410 Z724
Descriptors: social housing, breeding strategies, behavioral enrichment, pair housed males.

NAL call number: QL737 P9A5
Descriptors: single housing, social housing, behavior.

NAL call number: HV4701 A557
Descriptors: spatial behavior, structural complexity, baboons.

NAL call number: SF405.5 A23
Descriptors: housing, environmental enrichment, behavior.

NAL call number: SF405.5 A23
Descriptors: housing, adaptation, environmental enrichment.

NAL call number: SF407 P7L3
Descriptors: social housing, aggression, dominance, fear.

NAL call number: QL737 P9A5
Descriptors: perches, cage complexity, social behavior.

NAL call number: SF406.3 C66 1997
Descriptors: social disposition, semi-arboreal lifestyles, environmental complexity.

NAL call number: QL737 P9J66
Descriptors: space, social behavior, Cercopithecus aethiops.

NAL call number: SF756.7 I57 1996
Descriptors: zoos, enrichment, animal welfare, baboons.

NAL call number: BF671 J6
Descriptors: containers, drinking utensils, sponges, play, foraging, tool use.
Bibliography: Books and Conference Proceedings

NAL call number: QL737 PA5
Abstracts and posters of 178 papers from studies of primate.
Descriptors: genetics, anatomy, evolution, social behavior, cognition and learning, physiology and behavior, neurobiology and neuroscience, conservation, ecology, enrichment, well-being.

NAL call number: QL737 P9D53 1994
Descriptors: zoos, devices, behavior stimulation, review.

Descriptors: monitoring, housing, colony management, research applications, training animals.

NAL call number: SF408.45 N38 1994
Descriptors: regulations, housing design, laboratories, zoos, psychological well-being.

Descriptors: zoo primates, laboratory primates, mammals, birds.

NAL call number: SF407 P7167
Descriptors: care, transport, housing, breeding.

NAL call number: SF407 P7P79 1988
Descriptors: guidelines, enrichment program elements, apes, cebids, prosimians, callitrichids, cercopithecids, research needs, sample plans.

NAL call number: SF406 G95 1996
Descriptors: guidelines, laboratory animal housing, management, veterinary medicine, physical plant.

NAL call number: SF407 P7T49 1991
Descriptors: environmental enrichment, psychological wellbeing, group housing, zoos, laboratories.

NAL call number: SF406 G85 1993
Descriptors: social and behavioral requirements, facility design, special practices.
Descriptors: guidelines and regulations, enrichment programs, inanimate enrichment, feeding enrichment, substrates, animate enrichment.

NAL call number: SF408 5435 1998
Descriptors: philosophy, animal welfare, zoo animals, environmental enrichment methods.

NAL call number: QL737 P9T65 1997
Descriptors: behavior, psychology, motivation, preference testing.

NAL call number: KF1681 A3C6
Descriptors: social grouping, environmental enrichment, restraint devices, exemptions.

Articles from the *Animal Welfare Information Center Newsletter*

NOTE: The following articles have been approved by USDA for inclusion in the newsletter and are in public domain. Although they have been reviewed editorially, they have not been peer reviewed. The views expressed are those of the authors.

Using Training to Enhance Animal Care and Welfare

The Use of Behavioral Management Techniques to Reduce or Eliminate Abnormal Behavior

Environmental Enrichment for Captive Wildlife Through the Simulation of Gum Feeding

Arguments for Single-caging of Rhesus Macaques: Are They Justified?

Frequently Asked Questions About Safe Pair-housing of Macaques

The Wisconsin Gnawing Stick
Viktor Reinhardt (1997), *Animal Welfare Information Center Newsletter* 7(3-4): 11-12
Appendix A: USDA Final Rule on Environment Enhancement to Promote Psychological Well-Being--Section 3.81

In response to a Congressional amendment to the Animal Welfare Act, USDA must write regulations. The regulations explain what affected parties must do to comply with the amendment. USDA issues proposed rules which are published in Federal Register and open for public comment. After comments are received, USDA issues a final rule in which changes to the proposed rule may or may not be made based on public input. The final rule below is USDA justification for the new regulations and response to the many comments received by the department. The final rule is then incorporated into Title 9, Code of Federal Regulations.

02/15/91 Vol. 56, No. 32, Federal Register, Pages 6426-6505

DEPARTMENT OF AGRICULTURE
Animal and Plant Health Inspection Service
9 CFR Part 3
[Docket No. 90-218]
RIN: 0579-AA20
Animal Welfare; Standards

AGENCY: Animal and Plant Health Inspection Service, USDA.

ACTION: Final rule.

Environment Enhancement to Promote Psychological Well-Being--Section 3.81

In proposed Sec. 3.81, titled "Environment enhancement to promote psychological well-being," we proposed that dealers, exhibitors, and research facilities be required to develop, document, and follow a plan for environment enhancement adequate to promote the psychological well-being of nonhuman primates. We proposed to require that the plan be in accordance with the currently accepted professional standards as cited in appropriate professional journals or reference guides and as directed by the attending veterinarian. We also proposed to require that the plan be made available to APHIS, and, in the case of research facilities, to officials of any pertinent Federal funding agency. We proposed to require that the plan address certain specified areas, including: (1) Social grouping; (2) environmental enrichment; (3) special considerations of nonhuman primates requiring special attention; and (4) restraint devices.

A very large number of commenters supported in general the promotion of psychological well-being in nonhuman primates. A number of others requested that "psychological well-being" in nonhuman primates be defined. A number of commenters stated either that the term is undefinable and cannot be measured as an improvement for nonhuman primates, that it is impossible to establish valid standards for the animals' psychological well-being, that the proposed standards might be detrimental to nonhuman primates, that the proposed regulations regarding psychological well-being were excessive, or that the proposed standards were not based on scientific analyses. As we discussed in our proposal, what constitutes psychological well-being in each species and each primate does not lend itself to precise definition. As an agency, however, we are mandated by Congress to establish standards to promote the psychological well-being of nonhuman primates. As we discussed earlier, the information received from the expert committee on primates, consultations with HHS, other experts in primates, and the large number of comments received on the subject, demonstrate that the psychological well-being of nonhuman primates involves a balance of several factors or areas of concern. This concept involves sufficient space for the animals; methods to stimulate the animals and occupy some of their time, both physically and mentally (i.e., environment enrichment); and methods of social interaction with other nonhuman primates or humans.

The promotion of the psychological well-being of nonhuman primates is a critical component in our rewriting of the animal welfare regulations, and is one that we are specifically mandated to address under the Act. Statutorily, we have the responsibility and obligation to establish such provisions as we believe are necessary for a physical environment to promote the animals' psychological well-being, but do not have the authority to interfere with actual research.
One commenter stated that the regulations should not limit resource materials for the development of environment enhancement plans to professional journals and reference guides. The regulations as proposed require adherence to such information sources as a minimum. They do not prohibit the use of other research sources in establishing the required plans.

A large number of commenters urged that the regulations include specific requirements for exercise and social grouping of nonhuman primates, as proposed in our original proposal. We disagree with the commenters that it would be in the best interests of nonhuman primates to impose uniform rigid standards on all facilities. Because of the diverse needs of varying species and individual animals, it might actually prove harmful to establish the same set of specific standards for all animals.

A small number of commenters stated that any release of nonhuman primates for exercise and social interaction should be documented. We do not consider such documentation necessary for enforcement purposes. With the requirement for a written plan, and inspections by Department personnel, we do not expect enforcement problems with the regulations as proposed.

We are making two additions to Sec. 3.81 as proposed to clarify our intent. That section requires that the plan for environment enhancement be made available to APHIS. It was our intent that the plan be made available upon request. We are therefore adding language to Sec. 3.81 as proposed to clarify that intent. Additionally, we are specifying that the required plan for environment enhancement must be an appropriate one.

Social Grouping.

We proposed in Sec. 3.81(a) that the environment enhancement plan include specific provisions to address the social needs of nonhuman primates of species known to exist in social groups in nature. As proposed, such specific provisions must be in accordance with currently accepted professional standards, as cited in appropriate professional journals or reference guides, and as directed by the attending veterinarian.

A number of commenters opposed the proposed provisions regarding the social needs of nonhuman primates. Several commenters said the proposed provisions were vague and should be clarified, or that more specific criteria for meeting social needs should be set forth. Many others offered specific recommendations for addressing the animals' social needs. The proposed provisions regarding the social needs of primates were intentionally written so as to allow some flexibility and professional discretion to individual facilities in meeting the social needs of the animals. Exactly how the animals' social needs are met is of less importance than the fact that they are met.

One commenter stated that requiring that the social needs of nonhuman primates be met exceeds the intent of Congress. We do not agree with the commenter. In general, nonhuman primates are social animals, with the need for socialization constituting a significant component of their psychological makeup. Promotion of the animals' psychological well-being requires that their social needs be addressed.

A small number of commenters stated that caging nonhuman primates for their lifetime has proven to be advantageous both to the animals' care and to their welfare. We disagree that individually housing nonhuman primates, without addressing their psychological and social needs, is adequate to promote their psychological well-being. Such practices will not be in compliance with these regulations.

A number of commenters stated that social housing should not be mandatory, but rather should be one of the possible methods of enriching the animals' environment. Other commenters stated that multiple housing of animals is inappropriate in most cases. One commenter stated that socialization should be based on individual housing that allows for visual and auditory contact among nonhuman primates, rather than group housing. One commenter stated that, under the regulations as proposed, facilities might be precluded from housing only one nonhuman primate. We are making no changes based on these comments. The regulations as proposed do not specifically call for group housing of nonhuman primates. They do, however, require that the social needs of nonhuman primates be addressed. In most cases, we expect group housing to be the most efficient and appropriate method of ensuring that the animals' social needs are met.
Many commenters stated that social grouping would endanger the animals' welfare by increasing noise and fighting. We are making no changes based on these comments. The regulations in proposed Sec. 3.81(a)(3) require that nonhuman primates be compatible before being housed together. A number of other commenters, while supporting in general group housing of nonhuman primates, stated that in certain cases it might be inappropriate and detrimental. We agree that such situations might exist, and consider them to be already addressed in Sec. 3.81(a)(3) as proposed.

A small number of commenters stated that housing primates in groups will facilitate spread of infectious diseases. We consider the regulations as proposed adequate to prevent the spread of disease among group-housed animals. Section 3.81(a)(2) as proposed requires the isolation of nonhuman primates that have or are suspected of having a contagious disease. Additionally, the cleaning and sanitization requirements elsewhere in the regulations as proposed are designed to minimize disease introduction and spread.

A number of commenters expressed concern that group housing of nonhuman primates would result in increased physical and mental stress and trauma to animal handlers. As we discussed in our proposal, while we agree that housing primates in groups presents some logistical concerns that are not present when animals are housed individually, we believe that such concerns can be addressed by proper training of handlers and appropriate housing configurations.

A small number of commenters stated that meeting the requirements regarding the social needs of nonhuman primates will require facilities to increase their staffs. One commenter expressed concern that providing for group housing for primates will involve significant expense. We do not agree that compliance with the regulations as proposed will necessarily require large staffing increases. In any event, some additional staffing, if necessary, would not be unreasonable in response to the amendments to the Act. Whether additional staffing is needed will depend on how the facility meets the social needs of the nonhuman primates, on the physical configuration of the facility, and on the facility's method of operations. In some cases, housing animals in groups is less labor-intensive than housing them individually.

One commenter asserted that individually housing primates is appropriate in cases where the animal is used in experiments lasting 12 months or less. We are making no changes based on this comment. The Act does not distinguish between animals kept for a short term and those kept long-term, and requires minimum standards for all animals, regardless of the duration involved. The commenter presented no evidence to support the conclusion that individual housing for 12 months or less is not psychologically distressing to nonhuman primates, and we are not aware of scientific data supporting such a conclusion.

A small number of commenters stated that the fact that primates socialize in nature neither indicates nor suggests that they are psychologically harmed by eliminating contact with other nonhuman primates. We disagree. In general, nonhuman primates are social animals by nature. In providing for the psychological well-being of nonhuman primates, such social needs must be taken into account. Other commenters stated that social grouping has not been proven to assure psychological well-being or to prevent development of stereotypical behaviors. We are making no changes based on these comments. No practices or regulations can guarantee the psychological well-being of nonhuman primates in all cases. However, the most compelling evidence available indicates that certain practices, including housing nonhuman primates in groups, can promote psychological well-being. In general, housing in groups promotes psychological well-being more assuredly than does individual housing. On the other hand, individual housing has been demonstrated to give rise to significantly more stereotypical behavior than does group housing.

A small number of commenters recommended that compatible groups of nonhuman primates be required to remain together. Others recommended that primate infants remain with their dam for a minimum number of years, ranging from 2 years to 4 years. A small number of commenters recommended that the regulations allow primate families to be housed together. Others requested that such housing be required. One commenter stated that conspecifics should be housed together whenever possible. While we encourage such practices where possible, and nothing in the regulations as proposed prohibits them, we do not consider them practical in all cases. We are therefore making no changes based on these comments.

A small number of commenters suggested that behavioral scientists or animal psychologists may be more qualified than attending veterinarians to establish environment enhancement plans. Under the regulations as proposed, the attending
veterinarian has responsibility for directing the development of the plan. However, nothing in the proposed regulations prohibits consultation with other animal experts. On the contrary, we expect the attending veterinarian to carry out whatever consultation and professional research he or she deems necessary to adequately advise the facility. One commenter stated that at research facilities, the environment enhancement plan should be designed based on consultation with and review by the Committee. As noted, the attending veterinarian may consult as necessary in directing development of the plan. Further, at research facilities, animal care programs are subject to annual review by the Committee.

A large number of commenters stated that group housing could significantly interfere with research where social grouping, or the lack of it, is a factor. Conversely, a very large number of commenters stated that exemptions for research should be allowed only if it can be documented that social housing is interfering with the research. Under Sec. 2.38(k)(1) of part 2 of the regulations, research facilities are required to comply with the standards in part 3, except in cases where exceptions are specified and justified in the research proposal to conduct the specific activity and are approved by the facility's Committee. This provision exists to safeguard approved research.

In order to make clear situations where group housing would not be appropriate, we proposed to specify in Secs. 3.81(a)(1), (a)(2), and (a)(3) that the environment enhancement plan may provide that: (1) A nonhuman primate that exhibits vicious or overly aggressive behavior, or is debilitated because of age or other conditions should be housed separately; (2) a nonhuman primate or group of nonhuman primates that has or is suspected of having a contagious disease must be isolated from healthy animals in the colony as directed by the attending veterinarian; and (3) nonhuman primates may not be housed with other species of nonhuman primates or animals unless they are compatible, do not prevent access to food, water, and shelter by individual animals, and are not known to be hazardous to the health and well-being of each other. We also proposed that compatibility of nonhuman primates must be determined in accordance with generally accepted professional practices and actual observations, as directed by the attending veterinarian, to ensure that the animals are compatible. Additionally, we proposed that individually housed nonhuman primates must be able to see and hear nonhuman primates of their own or compatible species, unless the attending veterinarian determines that it would endanger their health, safety, or well-being. A small number of commenters expressed opposition to all individual housing of nonhuman primates. We consider it obvious that situations will arise where housing in groups is self-evidently more harmful than helpful, and are making no changes based on the comments.

A small number of commenters stated that the specific provisions described in the preceding paragraph should be deleted, because, according to the commenters, they all fall under the category of currently accepted professional standards. We consider the provisions in question minimum standards applicable in all situations. We are therefore making no changes based on the comments.

Environmental Enrichment

In proposed Sec. 3.81(b), we proposed to require that the plan discussed above include provisions for enriching the physical environment in primary enclosures by providing means of expressing noninjurious species-typical activities, and to provide that species differences should be considered when determining the type or methods of enrichment. We provided in the proposal that examples of environmental enrichments include providing perches, swings, mirrors, and other increased cage complexities; providing objects to manipulate; varied food items; using foraging or task-oriented feeding methods; and providing interaction with the care giver or other familiar and knowledgeable person consistent with personnel safety precautions.

Many commenters stated that the regulations should list all of the specific areas that must be addressed in an environmental enrichment plan. Some commenters expressed concern that the lack of a guide in choosing environment enrichments could result in prolonged experimentation at the expense of the primates' health and research funds. A number of commenters submitted specific practices that they believed should be included in achieving environmental enrichment. One commenter recommended that the Department set forth an exhaustive list of unacceptable practices. The provisions in Sec. 3.81 of the proposal set forth broad standards that must be met to ensure the psychological well-being of nonhuman primates. Section 3.81(b) is more specific, requiring enrichment of the physical environment by providing means of expressing species-typical activities. Examples of such enrichment are provided. Beyond this,
however, we do not consider it appropriate to attempt to set forth an exhaustive list of methods of achieving environmental enrichment. Because of the many variables affecting how best to enrich the environment for species and animals that have different needs and that are held under differing conditions, such a listing would be unnecessarily restrictive, and would not allow for advances in animal behavioral research. Nor do we consider it possible or necessary to set forth a comprehensive list of unacceptable practices. Practices will be considered unacceptable if they do not promote compliance with the standards in Sec. 3.81 as proposed.

Several commenters recommended that a panel of experts in primatology should be formed to develop standardized plans for environmental enrichment of nonhuman primates. For the reasons set forth in the preceding paragraph, we do not consider it appropriate to attempt to set forth a comprehensive listing of specific standards for environmental enrichment. A committee of the nature described by the commenters was convened prior to the initiation of this rulemaking process. We have drawn on the recommendations of that committee in developing this rulemaking.

One commenter stated that the regulations should list what species-typical behaviors are required, because all behaviors are not possible in a cage. We do not consider such a change practical or necessary, and expect common sense, along with professional judgment, to assist in determining what behaviors can and should be promoted in caged animals.

One commenter stated that professional standards for environmental enrichment do not exist. We disagree. While we welcome additional research with regard to environmental enrichment, sufficient professional consensus already exists to make plans for such enrichment appropriate. A small number of commenters stated that there is no definable species-typical behavior in captive nonhuman primates. We disagree. Species-typical behavior has been defined in both wild and captive populations, and sufficient data exists to meet the standards as proposed.

Special Considerations

In Sec. 3.81(c) of the proposal, we proposed that certain categories of nonhuman primates must receive special attention regarding enhancement of their environment. We proposed to require facilities to provide for the special psychological needs of (1) infants and young juveniles, (2) those that show signs of being in psychological distress through behavior or appearance, (3) those used in research for which the Committee-approved protocol requires restricted activity, (4) individually housed nonhuman primates that are unable to see and hear nonhuman primates of their own or compatible species, and (5) great apes weighing over 110 lbs. (50 kg).

As proposed, this special attention would be based on the needs of the individual species and in accordance with the instructions of the attending veterinarian. Some examples of special attention would be special feeding plans for juveniles, and increased one-on-one care for animals showing psychological distress.

A small number of commenters requested that additional criteria be provided as to what constitutes special attention. We are making no changes based on these comments. The form this special attention must take will depend to a great extent upon what form of environment enhancement is afforded all of the nonhuman primates in a facility under the required plan. Rather than restrict forms of special attention to a finite list, we consider it appropriate as proposed to base the special attention on the needs of the individual species, in accordance with the instructions of the attending veterinarian.

Several commenters stated that, at research facilities, the Committee and not the attending veterinarian should determine what special attention is necessary. We consider it appropriate in general to give responsibility for determining appropriate special attention to the attending veterinarian. However, the regulations do not prohibit consultation with the Committee.

A number of commenters addressed the requirement for special attention for nonhuman primates that show signs of being in psychological distress through behavior or appearance. A small number of commenters recommended that the term "psychological distress" be changed to "psychological pathology," because, according to the commenters, psychological distress can be of a transient or insignificant nature. We consider the term "psychological distress" to better convey our intent that facilities remedy even transient psychological disturbances than does the change recommended by the commenters, and are making no changes based on these comments. A small number of commenters stated that if a nonhuman primate exhibits stereotypical movements, such as hair pulling or similar signs of
psychological distress, consultation with outside experts should occur. Under the regulations, a facility is required to
provide adequate veterinary care to its animals. In certain cases, the attending veterinarian may consider it necessary to
conduct outside consultation in administering such care. However, we do not consider it necessary or practical to
include in the regulations a compendium of what constitutes adequate veterinary care. One commenter requested that
the regulations include a definition of "psychological distress." We consider the provision in question to be clear as
written. Any behavior or appearance that would indicate abnormal stress must be addressed.

One commenter requested that the regulations include examples of restricted activity in research situations that would
require special attention. We are making no changes based on this comment. The nature of restricted activity deemed
necessary under a research protocol is subject to approval by the Committee. We do not consider it appropriate to
attempt to enumerate in the regulations examples of restrictions that are the responsibility of the Committee.

Several commenters recommended that the provisions in Sec. 3.81(c)(5) as proposed be broadened to require special
attention for great apes other than those weighing over 110 lbs. (50 kg). We are making no changes based on these
comments. The special attention to be provided great apes over 110 lbs. is related to their need for additional space over
that required for other great apes in Sec. 3.80. For this reason, we do not consider it necessary to require special
attention for the smaller great apes.

Restraint Devices

We also proposed that the plan to be developed by the facility include provisions addressing restraint devices. We
proposed that nonhuman primates must not be maintained in restraint devices unless required for health reasons as
determined by the attending veterinarian, or by a research proposal approved by the Committee at research facilities. As
proposed, maintenance under such restraint would be limited to the shortest period possible. We proposed that, in
instances where long-term (more than 12 hours) restraint is required, the nonhuman primate must be provided the
opportunity daily for unrestrained activity for at least one continuous hour during the period of restraint, unless
continuous restraint is required by the research proposal approved by the Committee at research facilities.

A small number of commenters supported the proposed provisions regarding restraint devices as written. A small
number of commenters stated that the proposed exercise period for restrained nonhuman primates is insufficient. Upon
review of the comments, we continue to consider release for one continuous hour during the period of restraint
adequate to promote the animal's well-being, and are making no changes based on these comments.

A small number of other commenters recommended that it be required that restrained nonhuman primates receive social
contact with a conspecific primate during the exercise period, and that all animals placed in restraint devices with the
approval of the facility's Committee be inspected by the Committee prior to the Committee's granting approval for use
of the restraint device. We are making no changes based on these comments. The special needs of restrained animals
are already addressed in Sec. 3.81(c)(3) as proposed. Further, the restraint of animals must be reviewed by the
Committee at least twice annually, in accordance with part 2 of the regulations. Similarly, the recommendation of the
commenter who suggested that the Committee be required to investigate alternatives before approving research
protocols is already addressed in Sec. 2.31(d)(1)(ii) of part 2 of the regulations.

A small number of commenters expressed concern that requirements for the exercise of restrained animals would
interfere with research protocols. Some of these commenters recommended that requirements for restrained animals be
left to the Committee. We disagree that the provisions as proposed regarding restrained animals would interfere with
research. Under Sec. 2.38(k)(1) of part 2 of the regulations, exceptions to the standards in part 3 may be made when
such exceptions are specified and justified in the proposal to conduct an activity and are approved by the Committee.
For this reason, we are not adopting the recommendation of the commenter who stated that continuous restraint for
more than 12 hours should be prohibited in all cases.

A small number of commenters requested that the regulations differentiate between restriction of movement and
restraint. We are making no changes based on these comments. The regulations as proposed clearly pertain to
maintenance in restraint devices. We consider the reference adequate to convey our intent as written.

Exemptions--Section 3.81(e)
In Sec. 3.81(e)(1) of the proposal, we proposed that the attending veterinarian may exempt individual nonhuman primates from participation in environment enhancement plans because of their health or condition, or in consideration of their well-being, and must document the basis of such exemptions for each nonhuman primate. The basis of the exemption would have to be recorded by the attending veterinarian for each nonhuman primate. Unless the basis for an exemption is a permanent condition, it would be required that the attending veterinarian review the exemption at least every 30 days.

We proposed in Sec. 3.81(e)(2) of the proposal that the research facility's Committee may exempt individual nonhuman primates from some or all of the environment enhancement plans, for scientific reasons set forth in the research proposal. We proposed to require that the basis of such exemption be documented in the approved proposal and be reviewed at appropriate intervals as determined by the Committee, but not less than annually.

We additionally proposed to require that records of any exemptions be maintained by the dealer, exhibitor, or research facility and be made available to USDA officials or officials of any pertinent funding Federal agency upon request.

A small number of commenters expressed opposition to what they termed "loopholes" in the regulations, which they stated would allow researchers to house animals in isolation merely by claiming necessity. As discussed above, we do not have the authority to interfere with approved research, and are making no changes based on these comments. Several commenters opposed exemptions of any sort. Permitting exemptions based on approved research protocols is consistent with the provisions of the Act that we not interfere with the design, outlines, or guidelines of actual research. It may be necessary to the health and well-being of the animals to allow for exemptions for medical reasons. We are therefore making no changes based on these comments.

A number of commenters stated that the provisions for exemptions will require excessive paperwork, will be costly, and will subject the attending veterinarian's opinion to unqualified review. Throughout these regulations, we have attempted to minimize recordkeeping requirements. However, we continue to consider it necessary in facilitating inspection and enforcement that exemptions from the environment enhancement plan granted by the attending veterinarian be documented and be subject to review by the Department. We do not agree that it is necessary, however, as one commenter recommended, that documentation of exemptions be provided to the Department. Under the proposed regulations, these records must be made available to APHIS upon request. We consider that provision adequate to ensure proper inspection and enforcement.

A small number of commenters stated that exemptions should be reviewed by the attending veterinarian "as needed," rather than every 30 days as proposed. We are making no changes based on these comments. Because of the importance accorded the promotion of the psychological well-being of nonhuman primates under the Act, and because medical conditions in many cases change frequently, we consider it necessary and appropriate to ensure that exemptions to the environment enhancement plan be reviewed on a regular basis, to ensure that the exemptions are not in effect any longer than is necessary.

A small number of commenters stated that the facility should designate the individual most qualified to grant exemptions, because the attending veterinarian may not be the most qualified individual available with regard to animal behavior, and seldom has contact with nondiseased primates. A small number of commenters stated that the Committee, and not the attending veterinarian, should have final authority at research facilities with regard to exemptions. We are making no changes based on these comments. The exemptions granted by the attending veterinarian will be for medical reasons, which he or she is qualified through training to assess.

Several commenters stated that the attending veterinarian should be permitted to exempt either individual nonhuman primates or groups of nonhuman primates from participation in the environment enhancement plan, and that exemptions for permanent conditions, including old age, should not need to be reviewed every 30 days. We do not agree. To ensure each nonhuman primate's participation in the environment enhancement plan to the fullest extent possible, exemptions need to be made on an individual basis, according to the health, condition, and well-being of the animal. No blanket exemptions for groups or conditions are acceptable.

Several commenters recommended that it be required that exemptions made by the Committee be reviewed every 30 days. We do not agree with the commenters' recommendation. Exemptions made by the Committee will be made for
reasons relating to an approved research protocol. Such exemptions are not subject to as rapid change as exemptions for medical reasons, and do not need to be reviewed as often as those for medical reasons.
Using Training to Enhance Animal Care and Welfare

by
Gail Laule
Director of Animal Behavior
Active Environments

- Introduction
- Positive Reinforcement
- Aggressive Behavior
- Stereotypic Behaviors and Enrichment
- References

Introduction

There is a growing trend in the zoological and laboratory animal community to recognize the value of using operant conditioning techniques as an animal care and management tool. Animals have been trained for public exhibition for centuries, but only in recent times has the versatility of training been explored to any appreciable extent. The result has been a variety of benefits for animals, caretakers, veterinarians, and others concerned with the welfare of captive animals. This new interest in training has grown concurrently with the interest and attention surrounding the issue of psychological well-being. I don't believe this is an accident. In fact, a strong case can be made that training, from a physical and psychological perspective, is "good" for animals. However, I am referring to a specific type of training.

Positive Reinforcement

As consultants, we advocate and teach positive reinforcement training. This type of training relies on the voluntary cooperation of the animal to succeed. Unlike some methods, positive reinforcement training does not require food deprivation. Although animals are reinforced with rewards for the desired response, they are fed their daily allotment of food and rewards for training utilize that diet or extra treats. Operationally, it means that we exhaust the positive alternatives before any negative reinforcement is used. On the rare occasion when an escape/avoidance technique is necessary, it is used minimally and is balanced by a greater proportion of positive reinforcement. Punishment is only used in a life-threatening situation for a person or animal.

Positive reinforcement training is truly universal. Operant conditioning provides the tools; how the trainer uses them provides endless opportunities. We have used these techniques with marine mammals, great apes and other primates, canids, felids, ungulates, and others. The basic techniques remain the same; however, adjustments are made for different species, differences among individual animals, the environmental and social situations they are in, and the specific operational objectives.

If training has a down side, it is twofold. First, training is a skill that takes time and practice to develop. Poorly planned and implemented training can definitely create more problems than it will solve. Secondly, training is time and labor intensive, particularly in the initial stages of a project. However, if viewed in the longterm, these drawbacks can be turned into advantages. Having caretakers with training skills may help alleviate future problem behaviors. And, training results, such as animals voluntarily cooperating in veterinary procedures, ultimately are time and labor saving.

For example, in a pilot program being conducted at the chimpanzee breeding facility at the M.D. Anderson Cancer Center Science Park in Bastrop, Texas, urine collection training is being pursued with all breeding-age female chimps.
Currently, urine from these females is collected once per cycle by separating the female from her group and waiting for her to urinate, which may take minutes to hours. Training a chimp to urinate on cue may initially take several hours of time over several weeks. However, investing those few hours to achieve reliable collection in less than 10 minutes realizes tremendous time savings over the life of that animal. With urine collection simple and reliable, other research or medical opportunities also become possible.

Training offers a wide array of benefits for animals and personnel. Through the process of desensitization, animals are conditioned to voluntarily cooperate in veterinary procedures that can be negative events. Training sessions are spent pairing positive reinforcement with these negative events, ultimately making them less negative, less scary, and less stressful. Also, when animals voluntarily cooperate, anesthesia becomes unnecessary, and the frequency of these behaviors can be increased for use on a preventive basis. Another, more subtle benefit is the increase in choices and control that trained animals' experience. Restraining an animal for a procedure, or having an animal voluntarily cooperate during the procedure without restraint, are two very different events, for both the animal and personnel. One could argue that allowing animals greater control over their lives contributes to psychological well-being.

In practice, skillful use of training techniques has resulted in animals that voluntarily move between areas or cages in a reliable and timely manner; marine mammals that voluntarily allow routine blood, stomach, fecal, urine, and blow hole samples to be taken; and primates that cooperate in physical examinations including offering body parts for inspection (Fig. 2.) and treatment of wounds, tolerating a stethoscope and thermometer, and allowing blood sampling and injections (7, 11). Thus, the potential is there to condition individuals of many species to tolerate similar procedures.

Aggressive Behaviors

Training has proven to be effective in addressing aggression problems in social groups in a variety of species. One study documented the reduction of aggressive behavior of one male chimpanzee toward other group members during feeding time (1). By reinforcing the dominant animal for allowing the others to have their share of food and attention, both aggressor and subordinate animals benefitted. He received special treats and attention for his cooperation, and the others were able to receive and consume their allotted food in a less stressful environment. We call this technique "cooperative feeding" and have used it successfully over the years in many situations, including working pairs of male sea lions together, integrating subdominant dolphins into groups, and preparing and implementing introductions with gorillas and other primates (7, 8). It was also one technique employed with a group of drill baboons to increase overall positive social interactions and affiliative behavior within the group (3, 4).

Positive reinforcement training with elephants, implemented through a system we call "protected contact," has resulted in a dramatic reduction of aggressive behavior toward keepers (5, 10). In this type of training, where trainers work with the elephants through shields or barriers (Fig. 2), aggressive behavior is not punished, but simply ignored. At the same time, cooperative, nonaggressive behavior is reinforced when it occurs. The system does not rely on social dominance
or escape/avoidance techniques, but on the voluntary participation of the elephant. In fact, in 365 protected contact training sessions with four elephants, the animals chose to work 99 percent of the time. The result is an elephant that is motivated to cooperate with, rather than act aggressively toward, the trainer.

Fig. 2. "Protected contact" training allows trainers to work with elephants in a cooperative manner.

Stereotypic Behaviors and Enrichment

Training offers techniques and strategies to address neurotic or stereotypic behavior that is incompatible with the problem one, or a new behavior to replace the undesirable one, or by simply raising the amount of activity and stimulation for the animal, problematic behavior can be reduced or eliminated. In the case of one bottlenose dolphin, training strategies were successfully employed to reduce the incidence of four behavioral problems: swallowing of foreign objects, frequent regurgitation, biting trainers, and inability to integrate into a social group (6).

In a recent study conducted at the M.D. Anderson chimp facility, the issue of training as enrichment was explored. Preliminary results indicate that training offers some benefits for animals that are related to psychological well-being. For example, there are three significant positive changes occurred during training: reduced self-directed behavior, reduced inactivity, and increased social play (2). To my knowledge this is the first study of its kind, and we intend to do more.

Positive reinforcement training is gaining stature among animal managers as a useful tool for enhancing animal health care and husbandry needs. It is also more versatile and multi-functional than may initially be perceived. Whether the situation involves a solitary animal with limited sensory stimulation, or a group of animals in the most "naturalistic" environment imaginable, well planned and implemented training has a place.

References

Acknowledgements:
Work at the M.D. Anderson facility was supported by the NIH/DRR grants R01-RR03578 and U42-RR03489.

This article appeared in the Animal Welfare Information Center Bulletin, Volume 4, Number 1, Winter 1993
The Use of Behavioral Management Techniques to Reduce or Eliminate Abnormal Behavior

by
Gail Laule
Director of Animal Behavior
Active Environments

To: References

In the continuing quest to provide optimal care for animals in captivity, the issue of abnormal behaviors is a cause for concern. Whether we call them stereotypic, neurotic, nonadaptive, or atypical, behaviors of this kind are problematic. The consequences of abnormal behaviors range from unpleasant sights for the zoo visitor, as in the case of coprophagy in a resident gorilla, to serious health problems for the animals themselves, such as self-biting in a singly housed rhesus macaque. Animals exhibit abnormal behaviors in a variety of social and environmental contexts: naturalistic and purely functional, large social groupings and singly housed, enriched and sterile. No zoo, laboratory, or breeding facility is exempt. Neither is any species. One approach to dealing with abnormal behavior is through the use of behavioral management techniques. Behavioral management refers to the combined use of positive reinforcement training and environmental enrichment techniques.

A variety of strategies to address abnormal behavior have been reported, and they tend to fall into three main categories: feeding manipulations including types of food and methods of feeding (Ruempler, 1991; Bloomsmith, 1988); environmental manipulations and provisioning of toys and apparatus (Bryant, et al., 1988; Fried, et al., 1993); and social manipulations (Reinhardt, 1987). These various strategies have produced mixed results. Unfortunately, even in the best case scenarios, abnormal behaviors are most often reduced, not eliminated. References to the use of training as an intervention for abnormal behavioral problems are still fairly rare (Morgan, et al., 1993; Kirtland, 1993).

There are good reasons why efforts to reduce or eliminate abnormal behavior have limited success. First, the causes of abnormal behavior are often subtle and complex, and tracking down how and why the problem began can be a task worthy of Magnum P.I. Second, the relationship between real or perceived stressors and abnormal behavior can result in the behavior serving as a functional coping strategy for the animal (Gould and Bres, 1986). Once utilized as coping strategies, these behaviors are self-reinforcing and extremely tenacious in nature. Finally, problem behaviors often occur when people are not present, limiting the opportunity for direct intervention.

So, what benefits can behavioral management techniques offer personnel dealing with abnormal behavior problems? The greatest benefit they provide is the means to systematically address abnormal behavior and the underlying behavioral issues. In its purest form, a behavioral management approach is a practical exercise in the scientific method. The following steps illustrate the process.

1. Collect data. This is the question-asking phase of the process. Discovering when, where, and how a behavior occurs, and in relation to what, will ultimately lead you to a best guess as to why it occurs, and provide the basis for effective intervention. Relevant information includes:
 - When does the behavior occur?;
 - Under what circumstances?;
 - Is there a pattern?;
 - What outside factors affect the behavior such as feeding or cleaning schedules, medical procedures, the presence of unfamiliar people, activities involving animals other than the target animal, the presence or absence of cage or exhibit furniture, and so on?; and
 - What impact do social dynamics have on the behavior such as the social status of the target animal, the lack
of compatible conspecifics, the presence or absence of specific group members, and the level of positive and agonistic interactions within the group? The more objective the data, the better. Formal behavioral studies are ideal, but simple charts for when and how a behavior occurs, filled out by keepers or caregivers as they go about their daily activities, improve the quality of the information.

2. **Develop a hypothesis.** After a careful discovery process, a list of potential causes and contributing factors should be developed. Then, it's possible to make a guess as to why the abnormal behavior is occurring. For example, we could hypothesize that disruptive behavior by a chimpanzee, like throwing feces or trying to grab caregivers, is an attention-seeking behavior, whether the resulting attention is positive or negative. Or, we could guess that social pressure by the dominant male sea lion coupled with a predictable feeding routine are the underlying causes for a low-ranking sea lion regurgitating for extended periods of time after regularly scheduled feeds. The importance of a well-developed hypothesis is that it is the starting point from which your intervention plan is developed.

3. **Identify specific behavioral goals and initiate training and enrichment strategies.** With a clear hypothesis, you can design and implement an intervention plan to address targeted behaviors from a behavioral management perspective. For example, by definition, reinforcement increases the likelihood that a behavior will recur. In the case of the primate that utilizes disruptive behavior as an attention-seeking measure, look at the situation and determine where the reinforcement is occurring. More than likely, when the animal uses the disruptive behavior it receives a great deal of attention, probably negative, but attention none the less. Indeed, "displays" put on by frustrated humans who have just been "had" can be quite entertaining. But what is perhaps more relevant is what happens when the animal is not disruptive. Chances are the human walks right by.

According to the hypothesis, human attention is the reinforcement the animal is seeking. So, when are the rewards occurring, and what are the results? Ironically, feces throwing and arm grabbing are being continuously reinforced, while non-aggressive cooperation is not being reinforced at all. The resultant behavior is consistent with the reinforcement pattern. The intervention strategy is then two fold. First, reinforce the animal when it is not disruptive. Stop for a moment, say a few words, offer a small treat or favored toy, reinforce cooperative behavior (fig. 1). Second, do not reinforce the disruptive behavior. Turn around, count to 10, or walk away, and then look for any opportunity to reinforce the desirable behavior. This is a straightforward, simplified example of the problem-solving process. However, it is amazing how often this pattern is repeated in a variety of contexts with similar results.

![Fig. 1](image-url) Fig. 1. Rewarding non-aggressive cooperation helps eliminate disruptive attention-seeking behaviors.
In the case of the regurgitating sea lion, strategies must be devised to address both contributing factors identified in the hypothesis. First, the socialization problem can be dealt with by utilizing a training technique called "cooperative feeding." Operationally, it entails reinforcing two events simultaneously: dominant animals are reinforced for allowing subdominant animals to work and receive food or attention, while the subdominant animals are reinforced for being "brave" enough to work and accept food or attention in the presence of these more aggressive animals. In this case, training would focus on the target animal and the dominant male (Fig. 2). Second, the feeding schedule should be altered to make it less predictable. If times of feeds are on a set schedule, extra cooperative feeding sessions should be added in-between. Finally, enrichment strategies should be implemented in-between feeds to provide activity options other than regurgitation.

Fig. 2. Training can address socialization issues which are often contributing causes to abnormal behavior.

4. **Check the results.** There are no pat answers or guarantees in dealing with behavior, problematic or otherwise. It is dynamic in nature, and so much of what we do is guesswork. However, there are two processes that increase the likelihood of making the right guesses. First: the quality and extent of information gathered prior to initiating any work—the data collection phase. That, coupled with knowledge of the individual animal, makes a carefully developed *hypothesis* an educated guess. Second: an on-going evaluation of information you get back from the activity. Is a particular strategy achieving the results that are anticipated? If the answer is yes, it's a good bet to stay with the current strategy. If the answer is no, it's time to reevaluate and perhaps try something else.

5. **Adjust strategies if necessary.** It is critical to maintain a realistic expectation of results, so a strategy is not abandoned too quickly, or sustained too long. If that occurs, the result can be a great deal of frustration and confusion for the animal, which may worsen the problem. When one approach has been tried for a sufficient length of time (a critical judgment call) without the desired results, try something else. Then, check results again, and continue to adjust strategies as necessary. In tough cases, it may be necessary to try several different strategies before one works. Or often, it will be a combination of strategies that finally achieves the desired results. That's why good behavioral management skills include a heavy dose of creativity, innovation, and most important, flexibility.

The following are some specific examples of how behavioral management strategies have been used to decrease or eliminate abnormal behaviors.

Over a period of 7 months, a pilot behavioral project was conducted with a group of drill baboons (Desmond, et al., 1987). The primary goal of the project was to increase positive social interactions and reproduction among the group members (fig. 3). There was also concern about a sub-adult male who had been introduced to the group 6 months previously and was shunned by them. He often appeared stressed, and exhibited some abnormal behavior. Intervention was difficult due to the social dynamics within the group which made him and other subdominant animals inaccessible to the keepers for handling or husbandry purposes.
A thorough information-gathering process was conducted, which included interviews with relevant personnel and assessment of behavioral observation data conducted on the group for the previous 2 years. Based on this information, a hypothesis was formulated. The hypothesis was that a long-term moderate state of sensory deprivation had existed in the exhibit. This shortage of stimulation had resulted in subtle competition among group members which, in turn, inhibited breeding, other positive social interactions, and interest in interacting with the environment. It also contributed to the presence of problematic behaviors by all group members including fence nibbling, self-biting, and examining and eating feces.

Based on this hypothesis, the following behavioral goals and strategies were developed:

1. Increase overall sensory stimulation of the group through regular training sessions.
2. Increase positive social interactions in the group by cooperatively feeding animals in different dyads and triads, reinforcing them for eating and relaxing in close proximity to one another.
3. Increase keeper access to individual animals by establishing feeding stations and targets to control food intake, the movement of animals, and achieve voluntary separation.

Although reducing abnormal behaviors was a goal, the training strategies were developed to address the underlying causes of these behaviors - insufficient sensory stimulation, and socialization problems. Operationally, the young male was often paired with an adult female for cooperative feeding sessions. She was reinforced for staying while he was given food and personal attention. He learned to gently touch the trainer's hand and arm, approximating grooming. He slowly became less nervous and agitated when eating with the female, and increasingly more relaxed. Prior to this project, he had been observed biting his leg in a manner and frequency that indicated the potential onset of neurotic behavior. Keepers familiar with the exhibit reported a significant reduction in the observance of the behavior throughout the training project.

Documented results (table 1) showed significant increases in all forms of positive, social interactions during and following the project (Cox, 1987). Reduction in all forms of abnormal behavior was also achieved (table 2).
Note: Although aggressive behavior increased on an absolute level from before training to during training, it dropped from 34% to 25% of the total social interaction.

Another project illustrating the process of addressing abnormal behaviors involved a captive-born Bottlenose dolphin named Pepe (Laule, 1984). Living with a couple of other young animals, two separate attempts were made to integrate him into a larger social grouping of show animals. These attempts were unsuccessful, and in the process he developed several abnormal and problematic behaviors. These included an erratic appetite and attention span; biting people during unstructured play sessions; habitual regurgitation; and chronically swallowing objects that fell into the water.

In researching Pepe's situation and history, several factors were identified which may have contributed to the development of these problem behaviors. First there were health-related problems, including the presence of small ulcers which could have affected his appetite and energy level. He had also sustained an injury to his peduncle area, which caused occasional swelling and which was under constant scrutiny. This was later diagnosed to be osteomyelitis and a source of his chronically high white blood cell counts.

Another factor was his submissive behavior. Whenever he was introduced into the larger social group, despite his greater size, Pepe always aligned himself with the subdominant males and quickly became the lowest ranking animal. In that weak position, pressures were placed on him that he was apparently unable to cope with.

Differences in training regimen from one condition to the other may have also been a factor. These changes included the loss of his one primary trainer and subsequent replacement by four new individuals. Behavioral charts indicate that in the second condition he was worked inconsistently, less often, and with less challenging work. In a period of almost 2 years, he learned only one new behavior while losing several others. He also received less personal attention.

One last factor concerns the age at which Pepe was separated from his mother, and the impact that may have had on his subsequent development. Compared to the other five dolphins born at the park, Pepe's separation from his mother, at 18 months, was at a substantially earlier age. The average age of the other five animals was 29 months, with the youngest being 26 months and the oldest 33 months.

Although I found no definitive research or conclusions on optimal age of separation, Herman notes, in his book *Cetacean Behavior*, "Close affiliation between the newborn and mother continues for an extended period of time and dependency may persist even into adulthood" (Herman, 1980). Whether this had an impact on Pepe's later problems is uncertain. Nonetheless, it is noteworthy, in light of the extensive research done by John Bowlby on early separation of young human children from their mothers and the far-reaching effects this has on personality and behavioral development (Bowlby, 1973).

Once the potential causes and contributing factors were identified, a variety of strategies were employed to address each of the problematic conditions. Because of his delicate health, he was the first dolphin to be trained to present his tail flukes for blood sampling, and to accept a stomach tube and fecal tube insertion for sample collection. With his voluntary cooperation, it was easier and less stressful to perform these procedures and monitor his health on a regular and frequent basis.

To help stabilize his eating habits, and to curb his throwing up, different feeding schedules were employed. For a period of 2 weeks, Pepe was fed twice nightly to increase his appetite and weight. Little change was noted. Next, a schedule of eight feeds per day was begun which continued for approximately 2 months. His normal diet was fed in small amounts over the course of the day, with at least three of the feeds being training sessions. Accurate charts were kept, listing the time of day, number of pounds fed, and the amount, if any, of regurgitation seen. This provided a clear picture of Pepe's eating and regurgitating habits, and the evidence of change when it did occur. Specific intervention for the regurgitation included using a verbal "no" and short time out when Pepe would regurgitate during or after his feeds. Extra time was spent with him immediately following a feed, during which time he was rewarded with attention and play for not regurgitating.

To address both the problem biting and his habit of swallowing foreign objects, desensitization work was initiated to train him to allow us to touch his mouth, tongue, and teeth, without biting. At the same time, he was trained to retrieve safe objects like paper cups or paper towels, and then let us open his mouth and remove the objects from his mouth or
throat. Third, with a trainer in the water with him, work was begun with Pepe, reinforcing him for gentle play and non-biting behavior. The reinforcement was high at first, then slowly reduced until reinforcement was no longer necessary at all.

To assist in his socialization, he was specifically worked with each of the dominant animals. Pepe was encouraged and rewarded for participating in these sessions, while the dominant animal was rewarded for allowing him to do so. Conversely, if Pepe did not work, reinforcement was withheld from the other male until he did.

Other behavioral strategies included maintaining consistency of trainers, keeping the number of daily training sessions high, and balancing sessions between individual work and work with other animals. Special care was also taken to provide Pepe with a lot of personal attention (fig. 4).

Fig. 4. Pepe received extra personal attention during interventions to address abnormal behaviors.

Finally, Pepe was moved to a different show area with four other animals. From the first day, consistency in trainers was maintained by having myself or another familiar trainer with him everyday. For the first 2 weeks, we spent all of our extra time with Pepe, just sitting with him, rubbing him down, or playing. For 2 months, we were present during shows and training sets to work exclusively with him. Concurrently, the other animals were reinforced for allowing Pepe to work, and any positive social interactions were reinforced.

The results of these strategies were quite encouraging. Pepe was successfully integrated into the show. Socially, he appeared comfortable, interacting with all of the other animals and developing a strong bond with the female pilot whale, each displaying imitative behavior learned from the other.

His biting stopped completely. He would allow us to open his mouth and remove any objects. Rubbing his mouth and tongue became his favorite tactile behavior. In fact, Pepe's overall responsiveness to people increased tremendously. He would now seek attention and interact gently and non-aggressively. His retrieval work improved, so that he would voluntarily return an item he found to the trainer, or retrieve a specific object we pointed to.

His throwing up almost completely disappeared, with only an isolated occurrence being noted. His appetite and attention span, although occasionally erratic, improved greatly overall. He maintained his repertoire of behaviors and continued to learn others.

The examples I described were ambitious attempts to address and resolve a complex set of problematic behavioral issues. These efforts required an investment of time and effort that may not be practical or possible in many situations. However, what is applicable to every situation is the process. It doesn't have to be complicated and tedious, but to some degree it has to be done. Abnormal behavior is not a simple problem, and there are rarely simple solutions. The greatest success in dealing with abnormal behavior will come from addressing the causes of the problem, not just the problem behavior itself. With that approach, there are often simple things that can be done to positively impact the situation to some degree (Bayne, et al., 1993).

Behavior is an acknowledged indicator of well-being (Petto et al., 1990). When we strive to provide optimal care for
captive animals by providing for their physical and psychological well-being, reducing or eliminating abnormal behavior is an issue that cannot be overlooked or shortchanged.

For further information contact:

Active Environments Inc.
4478 Market Street, Suite 701
Ventura, CA 93001
Phone (805) 650-6464
Fax (805) 650-6467

References

Environmental Enrichment for Captive Wildlife Through the Simulation of Gum Feeding

by

Kathy Kelly

Department of Pathology, National Zoological Park
Washington, DC

The author is an animal records technician.

- Introduction
- Biology of Gumivory
 - Anatomical Adaptions
 - Nutritional Factors Associated With Gum-feeding
 - Ecological Factors Associated With Gum-feeding
 - NZP Research
 - Results of Providing Natural Wood Feeders to Marmosets
 - Marmoset Behavioral Responses
 - Benefits Resulting From Providing Gum-feeders to the Marmosets
 - Gum-feeding Results in Lion Tamarins, Goeldi's Monkey, Marsupials, and Rodents
- Discussion
- Table 1: Documented Gum and Sap Feeders
- References

Introduction

Exudativory, or the use of plant gums, saps, resins and occasionally latex as a food source in an animal's diet, has been increasingly documented by field studies performed during the past 40 years (Nash, 1986) (Figure 1). Animals known to eat plant exudates are found among the prosimians, marmosets, tamarins, squirrels, marsupials, old world primates, and birds (Fleagle, 1988; MacDonald, 1984; Post, 1983; Rylands, 1984; Smith, 1982; Wrangham, 1981; Bearder, et al., 1980; Charles-Dominique, 1977; Hausfater, et al., 1976; Izawa, 1975; Kilham, 1975; Tate, 1973; Radman, 1969). A literature search done in 1990 resulted in documentation of exudate-feeding in 45 species of animals (see table 1). However, the degree of dependency of animals on this food source is variable. For example, plant exudates are the major component of the natural diet of the Pygmy marmoset (Cebuella pygmaea) (Bearder, et al., 1980; Nash, 1986), Fork-marked lemur (Phaner furcifer) and other prosimians (Charles-Dominique, 1980; Oxnard, et al., 1990). These animals are considered primary gum-feeders based on their morphological, anatomical, physiological, and behavioral adaptations (Fleagle, 1988). Secondary gum-feeders are species that feed on plant exudates as a response to decreased fruit and flower availability, or climatic changes such as wet or dry seasons. Another factor that influences the degree to which animals rely on plant exudates is whether these exudate sources are water stressed, which results in low exudate production (Garber, 1984a; Nash, 1986; Lacher, et al., 1984). Exudate use also includes animals that ingest them opportunistically when they are found and animals that ingest exudates coincidentally when they eat, or perforate, bark down to the cambium layer during insect- or browse-feeding.
Between March 1988 and September 1990, I was a member of a behavioral research project at the Small Mammal
House, National Zoological Park (NZP), Washington, D.C. Our objective was to apply the information, documented by
field research about gummivory, to the captive management of our Pygmy marmosets, Black-tailed marmosets
(*Callithrix argentata melanura*), and Geoffrey's marmosets (*C. geoffroyi*). We also offered gum arabic to other animals
in the collection such as Lion tamarins (*Leontopithecus spp*.), Goeldi's monkey (*Callimico goeldi*), Low's squirrel
(*Sundasciurus lowi*), Sugar gliders (*Petaurus breviceps*), Prevost's squirrels (*Callisciurus prevosti*), and Cuban hutias
(*Capromys pilorides*). All of these animals, except for the Sugar gliders, were on exhibit during our study. Since our
experience is with gum-feeding, I will use the term gummivory, or gum-feeding, to be synonymous with the term
exudativory. The following information presents the results of our research experiences, gained knowledge, and the
unexpected side benefits we obtained from simulating gummivory in captivity.

Biology of Gummivory

Anatomical Adaptations

Generally, animals that use plant exudates are small bodied, have a high metabolism, and are incapable of storing large
amounts of fat. Primary gum-eaters have most, or all, of the following traits: small body size, clawed digits (for vertical
clinging at gum sources), long procumbent or semi-procumbent incisors complimented by short lower canines
(providing a level gouging/scraping surface), loss of enamel on the lingual side of the lower incisors complimented by
honing upper incisors (providing a sharpening effect that permits gouging or scraping abilities), a V-shaped
configuration of the mandibular arch, a long tongue (to reach gums within the plant bark), and an enlarged cecum (to
allow for fermentation of the gums) (*Fleagle, 1988; Coimbra-Filho, et al., 1978; Rosenberger, 1978; Hershkovitz,
1977*).

Nutritional Factors Associated With Gum-feeding

Gums are a high-energy food source composed mainly of water, complex polysaccharides, calcium, and trace minerals
(iron, aluminum, silicon, potassium, magnesium, and sodium) (*Nash, 1986*). Calcium is important to all animals,
especially female callitrichids (tamarins and marmosets) which commonly give birth to twins twice a year. It is during
the lactation period that the females are usually impregnated by the male. Therefore, they are developing fetuses while
nursing their fast-growing infants, resulting in an increased calcium demand. The calcium-to-phosphorus ratio is high
in gums which offsets its ratio in insects, which is low. Because all known wild gummivores also include insects in
their diet, combining the two, in captivity, may approach a desired nutritional balance and is recommended to avoid the
possibility of nitrogen loss and the loss of protein from the body (*Nash, 1986; Garber, 1984a; Sussman, et al., 1984;
Coimbra-Filho, et al., 1978; Moynihan 1976*).

Ecological Factors Associated With Gum-feeding
Gums from woody plants are reportedly available year round and are constant in their location (Bouchardet de Fonseca, et al., 1984; Ramirez, et al., 1978). This aspect allows marmosets, which are capable of eliciting gum flow, to be non-seasonal breeders and to subsist in small home ranges. Some tamarin species have been noted by field researchers to travel in association with marmosets and parasitize their gum sites.

It has been suggested that gums are an integral link in the food chain of gummivores (Soini, 1982). Some insects (moths, butterflies, ants) are attracted to the gum sites, while other insects simply get stuck in the sticky substance. These insects are often preyed upon by lizards and frogs. Gum-eaters prey on all of these animals, which reduces the amount of time and energy exerted in procuring animal protein in their diet. Gum-feeding typically occurs at the lower levels of the forest canopy (about 3 meters from the ground) where fruits and flowers are usually absent (Ramirez, 1978; Moynihan, 1976). The ability to subsist at this level lessens competition with other forest animals, which are predominantly frugivores or foliavores (Fleagle, 1988).

Gum-feeding is more than just another feeding strategy. It is the merging of the nutritional, ecological, behavioral, and evolutionary traits which allows species that are capable of using this resource to coexist in the wild.

Captive marmosets will instinctively gouge holes in exhibit furniture, despite the fact that they do not receive a food reward. Offspring of captive-born parents also gouge wood throughout their lives. The instinct to retain this behavior is so strong that infant marmosets in captivity demonstrate substrate "mouthing" behavior the prerequisite to gouging behavior as early as 3 weeks of age in Pygmy marmosets and at 5 weeks in Black-tailed marmosets (person. observ.).

NZP Research

In 1988, we began our research project by offering gum-feeders based upon McGrew's suggested artificial gum-feeder for marmosets (McGrew, 1986). These gum-feeders consisted of eight dowel segments with four drilled-out circular cavities (gum reservoirs) that were stacked onto a threaded, metal rod, secured with wing nuts, and wired onto the existing cage furniture. The marmosets not only accepted and fed from these gum-feeders, but became possessive of them when replacement was needed. Although the artificial feeders functioned, there were technical drawbacks. They required shop fabrication and needed to be soaked in water weekly because the dowel was very hard and dry. They were also unnatural in appearance, time-consuming to fill (filling with gum, feeder assembly, and installation of four feeders took approximately 2.5 hours per day), and they required weekly replacement. We abandoned this type of gum-feeder after 2 months and substituted natural branches for the dowel (gum reservoirs were simply holes drilled into the branch). Not only was this type of feeder accepted but it served as additional cage furniture that functioned as pathways and perches for the animals. This type of feeder provides the animals with a naturally textured substrate, is readily obtained, requires no assembly, and if hard wood is used, needs less frequent replacement (our hard wood feeders have been in place for 5 years). Filling these feeders can be accomplished in 5 to 10 minutes (Peterson, et al., 1988).

The following year we expanded the natural-branch idea to the use of floor-to-ceiling-length tree limbs, oriented in vertical and diagonal positions (Figure 2). This additional length of the feeders allowed us to provide eight feeding sites (gum reservoirs) in three locations on each feeder near the top, in the middle, and near the bottom.
Using check sheets and 45 trained volunteer behavior watchers, we observed for signs of differences in vertical versus diagonal preference, hardwood versus softwood feeders, and preference of depth and dimension of drilled holes.

We also experimented with presenting the gum arabic/water solution in a rodent water bottle with a sipper tube (do not use tubes with a ball-bearing). We offered this modified gum-feeder in three ways: 1) inserted through one of our feeders, with the stem protruding; 2) hidden inside a piece of cork bark, with the stem protruding; and 3) affixed directly onto the wiring of a holding cage. The third method could be used for an animal that has been separated for health reasons or because of preshipment. It could also be used for enrichment in a laboratory situation where individual housing may be necessary for compliance with research protocol. Our objective was to make the gum available ad libitum, in hopes that the marmosets would teach us how often they use it.

Results of Providing Natural Wood Feeders to Marmosets

Data analysis (850 observation hours) revealed that the Pygmy marmosets (1.1.2, 1.1, 1.1) \[Ed. Note: the first digit indicates the number of male animals, the second digit indicates the number of females, and the third, if present, indicates that the sex is unknown\] used all gum sites on all feeders provided to them regardless of position, type of wood, or depth and dimension of drilled gum holes. The Black-tailed marmosets (1.1.2) demonstrated a preference for gum sites that were mid to upper level on vertical feeders. The Geoffrey's marmosets (1.1) used all feeders and feeding sites provided to them regardless of orientation, type of wood, or hole dimension.

Marmoset Behavioral Responses

The Pygmy marmosets shared feeders and even feeding sites without conflict. Over time, the Black-tailed marmosets became territorial over the feeders and a pronounced hierarchy system emerged within the family. The male Geoffrey's marmoset hung back and allowed the female first access to the gum sites. This behavior has been documented in some species of wild prosimians (Charles-Dominique, 1977).

One observation consistent among our marmoset species was that the use of soft wood feeders stimulated more scent marking and gouging behavior which resulted in marked damage to the feeders as well as to the existing cage furniture.

By providing gum feeders in vertical and diagonal orientations, we had unintentionally provided the marmosets with the opportunity to employ their widely recognized abilities as vertical clingers and leapers. When eating gum from the feeders, the marmosets often fed from an upside-down, clinging position a posture not seen at other times. Gouging on feeders and eating gum from them required the marmosets to use muscles that are not used when locomoting quadrupedally on horizontal vines and branches the typical exhibit furnishings provided in captive settings (Newman, et al., 1990; Garber, 1984b).

Benefits Resulting From Providing Gum-feeders to the Marmosets

1.) Increased animal activity level: The marmosets immediately come down to the feeders while the keeper is injecting the gum into the drilled holes via a syringe. They would also return to the feeders, at various times in the day, to scrape off and eat the dried gum overflow that adhered to the feeders' bark. This replicates the feeding pattern of their counterparts in the wild (Fleagle, 1988).

2.) Increased animal visibility: The Pygmy marmosets in all three exhibits will come within 2-3 inches of a caretaker while the gum is injected into the drilled holes, while the four Black-tailed marmosets and both Geoffrey's marmosets will eagerly eat the gum arabic directly from a syringe (Newman, et al., 1990). This simplifies the task of performing daily head counts of these animals.

3.) Close proximity to exhibit animals allows for health observations: Since the marmosets either eat the gum directly
from a hand-held syringe or come within inches of the caretaker, we have been able to detect early signs of pregnancy and detect and monitor minor injuries (cuts, scratches) and dental problems that do not require immediate treatment. We used the gum-filled syringe to encourage our young Black-tailed marmosets to stretch out for sex confirmation. We also used the gum-filled syringe to administer antibiotics to our adult, female Black-tailed marmoset who was diagnosed with a flagyl parasite infection (Figure 3). She refused her medication, even when hidden in her favorite food items, but accepted it when it was mixed into the gum arabic solution (Kelly, et al., 1989) and offered to her in the familiar syringe. Feeding gum arabic has proven to be a useful tool for animal caretakers to keep abreast of their animals' general health. The aspects of close proximity to the animals with its resulting observational benefits can be performed without physical manipulation or stress to the animals (Newman, et al., 1990).

![Figure 3. A female Black-tailed marmoset is being given an antibiotic gum arabic solution without being removed from her family, who are watching the procedure. (Photo by Lee Miller)](image)

4.) Visitor experience enhancement: Throughout our study, all of the gum-feeders were positioned near the public viewing side of each exhibit. The public responded to our gum-feeding project with interest and enthusiasm, and countless questions about the animals. It is exciting for zoo visitors to see a captive animal active and interacting with its environment. Other visitors appreciated the opportunity to get close-up photographs of the animals engaging in a natural behavior.

Gum-feeding Results in Lion Tamarins, Goeldi's Monkey, Marsupials, and Rodents

In the summer of 1989, we offered floor-to-ceiling-length wood feeders to a mixed bachelor group of Golden Lion tamarins (*Leontopithecus rosalia*) and Golden-headed Lion tamarins (*L. r. chrysomelas*) that were exhibited outdoors. The feeders became a source of interest and stimulation for the tamarins. Use of these feeders again illustrated species-specific behavior responses.

The Golden-headed Lion tamarins stripped off the bark over the gum sites to gain access to the gum that had been injected into the holes, whereas the Golden Lion tamarins were observed probing the gum-filled holes and then eating the gum from their fingers. The Golden-headed Lion tamarins also returned to the feeders later and stripped off additional bark from over the gum holes to gain access to any gum residue. At no time did we observe conflicts between the tamarin species over the gum (Kelly, et al., 1989).

When we injected the gum into a wide, circular depression on one of the feeders, both species of tamarins were observed using their cupped hand to scoop up the gum and eat it. This is the same method used in the wild to obtain rainwater from the cups of bromelids.

Our trial with Goeldi's monkey was limited to an individual female that was housed with our Black-tailed marmosets during our initial study in 1988. She did taste, and, on occasion, eat some of the gum, but she did not demonstrate strong attraction to it as did the marmosets and tamarins. We believe she was simply mimicking the Black-tail's responses to the gum. We have since learned that wild Goeldi's are not known to eat gums from woody plants, but do
eat a sticky gum substance found on seed pods.

We were disappointed by our results with the Low's squirrel and the Sugar gliders. We offered a natural wood gum-feeder to a Low's squirrel and although the gum always disappeared, we never actually saw the squirrel using the feeder. It has been our experience that Low's squirrels are typically shy and secretive. The Sugar gliders (family group of five), however, stripped off large areas of bark from the feeders but ignored the gum sites. Further literature searches suggest they were probably searching for insects under the bark. Providing natural branches to Sugar gliders, even without gum, provides a stimulus to them which increases their activity level. Although both of these species are documented gum-eaters (MacDonald, 1984; Smith, 1982), the types of gum utilized by animals vary among species because of differences in geographic ranges and environmental factors. We used acacia gum extract in our trials which may not be the type of gum eaten by Low's squirrels and Sugar gliders.

One pair of Prevost squirrels in our study ate gum from the feeders as well as directly from the syringe. We do not place emphasis on their acceptance of the gum-feeders since this particular pair of squirrels were hand-raised and seek human interaction. The other pair of Prevost squirrels (parent-raised) in our study showed little-to-no interest in the gum or the feeders.

The responses of the Cuban hutias were surprising. Our four hutias were recently acquired, wild-caught animals. We do not have any documentation of gum-feeding in this species, but based on our theory that wood-eating species ingest gums, we offered the gum to them. The hutias, especially the females, ate the gum directly from the syringe but at no other time would they allow us close proximity to them. We have noticed that the females in all the trials, especially when pregnant, are usually the first animals to come for the gum.

Although we did not intentionally include Acouchis (Myopracta pratti) in our gum-acceptance trials, we learned that some acouchis will eat gum. The pair of acouchis housed in our mixed Geoffrey's and Pygmy marmoset exhibit began eating any gum that accidently landed on the floor. One of these acouchis would eat the gum directly from the syringe and would stand up on its hind legs, waiting to be fed the gum.

All of the above animals, except for the Low's squirrel and the Sugar gliders, would come surprisingly close to keepers feeding gum or they would accept hand-feeding via the syringe. This provided us with the same side benefits previously listed for the marmosets.

We also placed natural wood gum-feeders in some of our indoor mixed-species exhibits. The feeders became a source of interest and activity to the gum-eating species as well as to the non-gum-eating species. Curiosity was stimulated and intra- and inter-species activities resulted, thus creating a more interesting environment for the animals.

Discussion

Our research project has shown that natural branch gum-feeders can be used to simulate gummivory in captivity for a variety of animals. Use of natural branches/tree limbs is an inexpensive, readily available, and low maintenance method of providing environmental enrichment in an artificial setting. Simulating gummivory in captivity can be accomplished with minimal time investment and energy demand on the part of animal caretakers.

Modern zoos are attempting to exhibit animals in naturalistic settings. Ideally, the goal should be to exhibit animals in a naturalistic setting that stimulates behavioral interactions between the animals and their environment. We feel our natural branch gum-feeders help accomplish this goal.

When captive environments lack stimulus, animals are deprived of the opportunity to engage in some of their natural behaviors, which may be replaced by atypical behaviors characterized by excessive inactivity, grooming, and/or sleeping (Schoenfield, 1989). Duplicating natural habitats as much as possible in captivity encourages animals to use their innate behaviors (Hancocks, 1980).

Having the opportunity to demonstrate their natural gum-foraging behavior stimulated some of the animal's other natural behaviors, i.e., compatible sharing of feeders and feeding sites (Pygmy marmosets), methods of food acquisition
Providing natural wood gum-feeders to NZP animals resulted in: increased animal activity, increased animal visibility for record-keeping and general health observations, sexing of young animals, early detection of pregnancy, non-stressful medicating of sick animals, and detection and monitoring of minor injuries or dental disorders that do not require immediate medical attention (Figure 4).

Fig. 4. Hand-feeding gum via a syringe provides keepers with the opportunity to closely examine animals and dispense medication in a non-stressful manner. (Photo by Lee Miller)

Full-length feeders presented in vertical and diagonal orientations promote and compliment the locomotor abilities of known vertical clingers and leapers. Using the gum-feeders required the animals to use muscles that are not exercised during quadrupedal locomotion (Garber, 1984b). They provided the animals with the opportunity to assume postures not demonstrated prior to the introduction of the feeders, and they increased the amount of available, usable cage space. Simulating gummivory improved the condition of our animals and enhanced the interest and experience of our zoo visitors.

Providing interactive ways for captive animals to gain some control of their environment results in an aesthetic, interesting, potentially educational, and functionally useful exhibit. Attempts at environmental enrichment, such as simulating gummivory, could simultaneously be used to help visually demonstrate the evolutionary niche of various species while illustrating the need to conserve entire ecosystems as well as individual species.

This paper is dedicated to the memory of Yoda, a 4-year-old Black-tailed marmoset who was the catalyst for this research project.

Table 1 - Documented Gum and Sap Feeders

| Prosimians: | Euticus elengatulus - Needle-clawed Galago
Galago alleni - Allen's bushbaby
G. senegalensis - Senegal bushbaby
G. crassicaudatus - Thick-tailed bushbaby
Galagoides demidovii - Dwarf galago
Perodicticus potto - Potto
Lemur catta - Ring-tailed lemur
L. fulvus - Brown lemur
Microcebus murinus - Mouse lemur
Mirza coquereli - Coquerel's dwarf lemur |
<table>
<thead>
<tr>
<th>Phaner furcifer - Fork-marked lemur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marmosets:</td>
</tr>
<tr>
<td>Callithrix argentata melanura - Black-tailed marmoset</td>
</tr>
<tr>
<td>C. a. aurita - Buffy tufted-ear marmoset</td>
</tr>
<tr>
<td>C. flaviceps - Buffy-headed marmoset</td>
</tr>
<tr>
<td>C. geoffroyi - Geoffrey's marmoset</td>
</tr>
<tr>
<td>C. humeralifer - Tassel-ear marmoset</td>
</tr>
<tr>
<td>C. jacchus - Common marmoset</td>
</tr>
<tr>
<td>C. j. pennicilla - Black tufted ear marmoset</td>
</tr>
<tr>
<td>Cebuella pygmaea - Pygmy marmoset</td>
</tr>
<tr>
<td>Tamarins:</td>
</tr>
<tr>
<td>Saguinus fuscicolli - Saddle-back tamarin</td>
</tr>
<tr>
<td>S. imperator - Emperor tamarin</td>
</tr>
<tr>
<td>S. labiatus - Red-bellied tamarin</td>
</tr>
<tr>
<td>S. midas - Golden-handed tamarin</td>
</tr>
<tr>
<td>S. nigricollis - Black-mantle tamarin</td>
</tr>
<tr>
<td>S. oedipus - Cotton-topped tamarin</td>
</tr>
<tr>
<td>S. o. geoffroyi - Geoffrey's tamarin</td>
</tr>
<tr>
<td>Squirrels:</td>
</tr>
<tr>
<td>Hylopetes spadiceus - Red-cheeked squirrel</td>
</tr>
<tr>
<td>Microceurus - Pygmy squirrel</td>
</tr>
<tr>
<td>Sciurus vulgaris - Red squirrel</td>
</tr>
<tr>
<td>Sundasciurus lowii - Low's squirrel</td>
</tr>
<tr>
<td>S. tenuis - Slender squirrel</td>
</tr>
<tr>
<td>Old World Monkeys:</td>
</tr>
<tr>
<td>Cercopithecus aethiops - Vervet monkey</td>
</tr>
<tr>
<td>Erythrocebus patas - Patas monkey</td>
</tr>
<tr>
<td>Papio c. cynocephalus - Yellow baboon</td>
</tr>
<tr>
<td>Macaca sylvanus - Barbary macaque</td>
</tr>
<tr>
<td>Pan troglodytes - Chimpanzee</td>
</tr>
<tr>
<td>Marsupials:</td>
</tr>
<tr>
<td>Gymnobelideus leadbeateri - Leadbeater's possum</td>
</tr>
<tr>
<td>Petraurus australis - Yellow bellied glider</td>
</tr>
<tr>
<td>P. breviceps - Sugar glider</td>
</tr>
<tr>
<td>Other Mammals:</td>
</tr>
<tr>
<td>Ursus americanus - Black bear</td>
</tr>
<tr>
<td>Loxodonta africana - African elephant (in Amboseli)</td>
</tr>
<tr>
<td>Birds:</td>
</tr>
<tr>
<td>Artideotis kori - Kori bustard</td>
</tr>
<tr>
<td>Coua cristata - Crested coua (Madagascar)</td>
</tr>
<tr>
<td>Sphyrapicus varius - Yellow-bellied sapsucker</td>
</tr>
</tbody>
</table>

References

Institution Press, pp. 105-115.

Arguments for Single-Caging of Rhesus Macaques: Are They Justified?

by

Viktor Reinhardt, D.V.M., Ph.D., Animal Welfare Institute, Washington, DC 20007

To: References

Human primates are social by nature and strive best in the supportive environment of compatible conspecifics. Being forcefully deprived of companionship is therefore one of the most dreaded punishments. Nonhuman primates share the same basic "social needs" (36) as human primates do, and sociality is central to their very survival (2). Like human primates, nonhuman primates may become mentally disturbed when chronically kept in social isolation, and they often express their distress in abnormal behavior patterns (cf. 6).

Despite the inherent ethical problems related to social deprivation, social housing of nonhuman primates is seen as a husbandry priority only by a minority of primatological investigators (14). Thus, single-caging is still the prevailing housing condition for laboratory primates (13, 30). The regulatory "safeguard" (15) prescribing social housing (36) is apparently not very effective. The following arguments are often brought forward in justification of the traditional single-caging:

1. The animals are too aggressive to be socialized with each other.

2. Socially housed animals are at greater health risk than individually housed animals. They suffer distress from being constantly exposed to companionship. Subordinate animals become undernourished because of food competition.

3. Pair-housed animals become bored of one another.

4. Social housing interferes with research protocols.

The present paper examines the justification of these notions as they pertain to the most common laboratory nonhuman primates, i.e., rhesus macaques (Macaca mulatta).

Numerous studies have indeed shown that unlike in other nonhuman primate species (e.g., Pan troglodytes, 7; Cebus apella, 1; Saimiri sciureus, 12) group formation and subsequent group housing of rhesus macaques are likely to be associated with serious problems related to aggressive intolerance (e.g., 5, 10). Alternative pair formation and subsequent pairhousing techniques have therefore been developed for rhesus macaques (17, 18, 21, 4) in order to avoid the risk attendant on group housing. How successful are these techniques?

- No noteworthy aggression was observed when either 64 or 104 juveniles were transferred from single-caging to heterosexual and isosexual pair-housing conditions for 1 year (33, 31).

- Transferring 65 adult females and 13 adult males from single- to pair-housing arrangements with infants for 1 year was successful in 93 percent of cases (94 percent of female/infant pairs, 92 percent of male/infant pairs). Pairs were split due to aggression in 3 percent of cases. Inadequate food sharing and "teasing" accounted for the other 4 percent of pair incompatibility (31).

- Transferring 154 adult females and 40 adult males from single-caging to continuous isosexual pair-housing...
conditions with each other for 1 year was successful in 87 percent of cases (88 percent of female pairs, 80 percent of male pairs). Partners were separated in 6 percent of cases because one of them seriously aggressed the other. Inadequate food sharing or depression accounted for the remaining 7 percent of partner incompatibility (31).

- Transferring 24 previously single-caged adults of both sexes to uninterrupted isosexual pair-housing conditions for 3 to 7 years was associated with pair incompatibility in 12 percent of cases, with serious aggression accounting for 3 percent. There were no indications that long-term compatibility of male pairs was less than that of female pairs, that partners did not readily adjust to new companions, or that the presence of offspring jeopardized the compatibility of companions (32).

These findings indicate that "the conventional wisdom that unfamiliar adult macaques are more likely to fight than to coexist peacefully" (11) does not hold true for the most common and, supposedly, most aggressive species, i.e., *Macaca mulatta*. The published information available provides evidence that no unreasonable risk of aggressive intolerance accrue when previously single-caged individuals are subjected to careful pair formation and subsequent permanent pair-housing protocols (c.f. 27). Pair housing effectively avoids the typical aggression problems of group housing.

The health risk associated with pair housing as compared to conventional single housing was assessed in three independent studies. In no case was clinical morbidity, as measured in the rate of veterinary treatment, higher in pair-housed than in single-housed subjects (23, 4, 35). In a study of 96 monkeys transferred from single- to compatible pair-housing conditions, subjects required veterinary treatment once every 909 days while singly caged, versus once every 2,104 days while pair housed (35). This suggests that pair housing may be an effective housing strategy not only from the behavioral but also from the veterinary point of view (35).

Three separate investigations examined the stress status of compatible pair-housed versus single-housed animals. Serum cortisol concentrations (26, 33) and immune stress response (4) of subjects did not differ in both housing conditions. Stress indices of subordinate animals were not higher than those of their dominant partners (26, 4).

Rather than being a source of distress, the compatible companion may function as a source of security (e.g., 8). This is particularly relevant for the experimental context in which the presence of a familiar conspecific functions as a buffer against environmental stress that the single-caged individual is lacking (21). Needless to say that scientific data collected from such a "stress-protected" subject are less confounded than data collected from a socially deprived research subject (cf. 3). The comforting rather than distressing effect of companionship can also be inferred from the fact that individuals afflicted with gross behavioral disorders often abandon their neurotic activities after being provided with a compatible cage mate (18, 19, 11).

Three independent studies failed to find a negative impact of pair housing on body weight development (20, 29, 4). There was also no evidence found of dominant animals gaining more body weight than their subordinate partners (20, 4). This is not surprising because adequate food sharing is an important condition to qualify a pair as compatible and allow partners to stay together (22).

The stimulatory effect of a cage mate has been evaluated in animals that have lived together as pairs for 1 year or longer. Five investigations have shown that paired companions spend approximately the same amount of time interacting with each other in species-typical ways (figure 1) as do wild animals living in troops (16, 24, 29, 4, 34). This suggests that a compatible cage mate-- unlike inanimate toys--maintains its stimulatory effect over time, probably because of its inherent ever-changing nature.

It has been documented that the following research-related procedures can readily be accomplished in pair-housed rhesus macaques:

- capture from cage (28);
- blood collection in the subject's home cage (25);
- tethering (25); and
- headcap implantation (22, 25).
Procedures such as controlled food intake and urine and fecal sampling require the temporary separation of partners with transparent cage-dividing panels, allowing uninterrupted visual, olfactory, and auditory contact.

The findings presented in this report indicate that common arguments in justification of the traditional single-caging of rhesus macaques are often based on subjective assumptions rather than on scientific facts. Providing the animals a social environment in the form of compatible pair-housing arrangements does not unduly jeopardize their safety (no conspicuous aggression problems), health (no conspicuous veterinary problems), physical well-being (no signs of distress), behavioral well-being (species-typical expression of social needs; amelioration of behavioral disorders) and adequate food intake, nor does it interfere with common research procedures. Professional standards stipulate that "unless absolutely essential, primates should not be housed alone in a cage on a long-term basis" (9). The question of what makes it "absolutely essential" to deprive the majority of research rhesus macaques of social contact and social interaction by housing them permanently alone in single cages remains to be answered.

References

This article appeared in the *Animal Welfare Information Center Newsletter*, Volume 6, Number 1, Spring 1995

Go to:
Contents, *Animal Welfare Information Center Newsletter*

Top of Document

The Animal Welfare Information Center
U.S. Department of Agriculture
Agricultural Research Service
National Agricultural Library
10301 Baltimore Ave.
Beltsville, MD 20705-2351

Phone: (301) 504-6212
FAX: (301) 504-5181
Contact us: http://awic.nal.usda.gov/contact-us

Policies and Links

June 18, 2013
This page's URL is http://www.nal.usda.gov/awic/newsletters/v6n1/6n1reinh.htm
Frequently Asked Questions About Safe Pair-Housing of Macaques

by

Permanent pair-housing of previously single-caged macaques has become an accepted way of providing the animals with a more species-appropriate environment in the research laboratory setting. The push towards this change has come primarily from animal care personnel and veterinarians, but there is also an increasing number of scientists who recognize that macaques need social companionship for their behavioral health.

Using a simple pairing technique (1), I have transferred several hundred adult rhesus and stump-tailed macaques from single-housing to isosexual pair-housing arrangements at the Wisconsin Regional Primate Research Center. There are several frequently raised questions regarding details of the pair-formation and subsequent pair-housing protocol that I want to address here for the benefit of those who want to make sure that institutionalizing pair-housing of macaques at their facility will not jeopardize the safety of the animals.

1. Why is it necessary that potential partners establish a rank relationship prior to pairing?

 The dominance-subordination relationship is a basic condition for the two macaques living together. The animals do not have to engage in possibly injurious fighting but really establish such a relationship during a non-contact familiarization period in a double cage with a grated partition allowing visual, olfactory, and auditory communication. When later being introduced to each other in another cage without a partition, the subordinate partner will respect the dominance of the other, and the two therefore have no reason to fight.

2. How do I know that two animals have established a rank relationship?

 Grinning, withdrawing, or turning away when being looked at or when being approached by the neighbor and threatening-against-the-observer-and-glancing-back-at-the-neighbor are indicators of subordination. A relationship is settled if any or all of these behaviors are strictly shown by only one of the two partners; this animal is the subordinate, the other is the dominant one of the dyad. Aggressive behaviors such as threatening or slamming against the cage dividing panel are not suitable to reliably determine the rank relationship between two partners.

3. How long does it take two monkeys to establish a rank relationship?

 About 75 percent of the animals show clear signs of a dominance-subordination relationship within the first day of noncontact familiarization (2).

4. Can I pair the animals on the first day of familiarization?

 Yes, after you have seen that one partner is subordinate to the other. It is advisable, however, to pair such animals the next morning in order to have a whole day to ascertain their compatibility.

5. Is it really necessary to pair the animals in a different double cage, rather than simply removing the grated partition?

 The partners of some, but not all, pairs will engage in vicious territorial antagonism at the moment you remove the cage
dividing grated panel, regardless of the fact that they already have a well-established rank relationship. It is impossible
to predict which pairs will react in this way since cage neighbors across the aisle may instigate such disputes. With the
safety of the animals a priority, it is therefore recommended not to take chances but make it a rule to transfer all
potential pairs into a different area where everything is strange to them except the other companion. The management
of the pair-housing program can be simplified if a familiarization cage is set aside in a designated test room and
potential pairs moved from there to new home cages.

6. **What is the cumulative time that I have to invest to form a compatible pair?**

 About 30 minutes.

7. **Is there a way that I can avoid subjecting paired animals to the stress associated with
temporary separation during research procedures?**

 Many procedures--such as venipuncture, topical application of drugs, intramuscular injection, remote sampling via a
tether--can be done in pair-housed animals without separating the partners. If two companions have to be physically
separated -- for example, during postsurgical recovery, restraint chair experiments, metabolic experiments, food intake
studies, urine/fecal collection studies --there is no reason for not allowing them to keep continual visual and auditory
contact with each other with the help of a transparent cage divider or a mobile cage. Husbandry-related routine
separations --for example, during TB testing, weighing, physical/pregnancy examination--are unlikely to distress the
animals because they quickly learn that they are reunited after a short while.

8. **Are male pairs less compatible than female pairs?**

 No, as long as you keep them in male-only areas to avoid sexual competition triggered by the sight of a receptive
female.

9. **If a pair becomes incompatible, can I pair the animals with other partners?**

 Yes, the sooner the better.

References

1. Reinhardt V. (1988). Preliminary comments on pairing unfamiliar adult male rhesus monkeys for the purpose of

Primateology* 23: 426-431.

This article appeared in the *Animal Welfare Information Center Newsletter*, Volume 7, Number 1, Spring 1996

Go to:
Contents, Animal Welfare Information Center Newsletter
Top of Document
Financial and labor costs often limit the implementation of environmental enrichment options, especially when enrichment should be provided for a large number of individual animals.

The Wisconsin Gnawing Stick was developed in 1987 to serve as an affordable inanimate enrichment option for caged macaques. The sticks simply consist of branch segments of dead deciduous trees. Depending on the size of the individual animal, they have a length of 12-30 cm and a radius of 2-6 cm. Sticks cut of red oak (*Quercus rubra*) branches are particularly suitable because they gradually wear into flakes that are so small that even large quantities pass through sewer drains without clogging. Branches of many other common tree species (white oak, black locust, box elder, black cherry, weeping willow, silver maple) disintegrate into relatively large strips that tend to get stuck in drains, thereby causing clogging problems.

Branches of dead trees are obtainable for no or little expense, and they can be easily cut with a bow saw into adequately sized segments. The gnawing sticks are placed into the cages without any attachment. They are cleaned with warm water daily and disinfected once every 2 weeks during the routine cage sanitation procedures.

Loose branch segments elicit the following behaviors in macaques: manipulating, gnawing, nibbling, chewing, hugging, dragging, rolling, playing, and perching (*fig. 1*). The opportunity to gnaw a chewable natural material not only counteracts boredom, but is also likely to benefit the animal's dental health (Brinkman 1996, Reinhardt 1990a, Reinhardt 1990b). Because of gradual wear and progressive dehydration, the sticks steadily change their texture and configuration, thereby retaining some novelty. After 1-6 months, they usually become so small that they have to be
replaced (figure 2).

In a pilot study, 25 adult, singly-caged rhesus macaques (Macaca mulatta) were each exposed to a regularly replaced gnawing stick for 12 months and observed thereafter. The most recently replaced stick was 1 month old. It revealed traces of wear in 96 percent of cases and was actively used by the animals 0 to 20.6 percent of the time with a mean of 3.3 percent (Reinhardt 1989).

In a later assessment, 60 pair-housed rhesus macaques of different age classes (42 adults 9-30 years old, 18 sub-adults 3.5-4 years old) were exposed to gnawing sticks for 18 months and observed thereafter. Each pair had continuous access to two sticks that had been replaced 1 week before the test observation. The sticks showed traces of wear in 100 percent of cases. Individuals were engaged in stick use on average 4.8 percent of the time, with subadults spending significantly more time with the sticks than adults (9.5 percent versus 2.8 percent) (Reinhardt 1990b). In a comparative study with 20 adult pair-housed stump-tailed macaques, individuals were actively engaged with their gnawing sticks 2.2 percent to 28.2 percent of the time with a mean of 5.7 percent (Reinhardt 1990a).

In addition to perches and social companionship, red oak gnawing sticks were implemented at the Wisconsin Regional Primate Research Center as basic cage enrichment in 1989. All caged rhesus macaques (more than 700 animals) and all caged stump-tailed macaques (approximately 36 animals) have continual access to gnawing sticks since that time. This simple and inexpensive enrichment technique provides the animals with sustained species-adequate stimulation for the expression of species-typical behaviors. Long-term exposure to the sticks has resulted in no recognizable health hazards (compare with Line and Morgan 1991).

Acknowledgments

I am very thankful to the Cowley family for granting me permission to cut more than 5,000 gnawing sticks from dead red oaks on their farm without charge.

References

This article appeared in the Animal Welfare Information Center Newsletter, Volume 7, Number 3-4, Winter 1996/1997

Go to:
Contents, Animal Welfare Information Center Newsletter
Top of Document

The Animal Welfare Information Center
U.S. Department of Agriculture
Agricultural Research Service